1. On Iterative Solution of the Extended Normal Equations
- Author
-
Xavier Vasseur, Henri Calandra, Serge Gratton, Elisa Riccietti, Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Institut Supérieur de l'Aéronautique et de l'Espace - ISAE-SUPAERO (FRANCE), Total (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Université Toulouse - Jean Jaurès - UT2J (FRANCE), Université Toulouse 1 Capitole - UT1 (FRANCE), Institut de Recherche en Informatique de Toulouse - IRIT (Toulouse, France), TOTAL-Scientific and Technical Center Jean Féger (CSTJF), TOTAL FINA ELF, Algorithmes Parallèles et Optimisation (IRIT-APO), Institut de recherche en informatique de Toulouse (IRIT), Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées, Institut National Polytechnique (Toulouse) (Toulouse INP), Département d'Ingénierie des Systèmes Complexes (DISC), Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), and ANR-19-P3IA-0004,ANITI,Artificial and Natural Intelligence Toulouse Institute(2019)
- Subjects
Linear system ,Linear systems ,010103 numerical & computational mathematics ,Conjugate gradient method ,Special class ,Mathématiques générales ,01 natural sciences ,010101 applied mathematics ,Combinatorics ,Matrix (mathematics) ,[MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM] ,Forward error ,Least squares problems ,0101 mathematics ,Analysis ,Mathematics - Abstract
International audience; Given a full-rank matrix $A \in \mathbb{R}^{m\times n}$ ($m\geq n$), we consider a special class of linear systems $A^T\! Ax=A^T\! b+c$ with $x, c \in \mathbb{R}^{n}$ and $b \in \mathbb{R}^{m}$, which we refer to as the extended normal equations. The occurrence of $c$ gives rise to a problem with a different conditioning from the standard normal equations and prevents direct application of standard methods for least squares. Hence, we seek more insights on theoretical and practical aspects of the solution of such problems. We propose an explicit formula for the structured condition number, which allows us to compute a more accurate estimate of the forward error than the standard one used for generic linear systems, which does not take into account the structure of the perturbations. The relevance of our estimate is shown on a set of synthetic test problems. Then, we propose a new iterative solution method that, as in the case of normal equations, takes advantage of the structure of the system to avoid unstable computations such as forming $A^T\! A$ explicitly. Numerical experiments highlight the increased robustness and accuracy of the proposed method compared to standard iterative methods. It is also found that the new method can compare to standard direct methods in terms of solution accuracy.
- Published
- 2020
- Full Text
- View/download PDF