Back to Search Start Over

A new preconditioner update strategy for the solution of sequences of linear systems in structural mechanics: application to saddle point problems in elasticity

Authors :
Sylvain Mercier
Nicolas Tardieu
Xavier Vasseur
Serge Gratton
Commissariat à l'Energie Atomique et aux énergies alternatives - CEA (FRANCE)
Centre National de la Recherche Scientifique - CNRS (FRANCE)
EDF (FRANCE)
Ecole Nationale Supérieure de Techniques Avancées - ENSTA (FRANCE)
Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
Institut Supérieur de l'Aéronautique et de l'Espace - ISAE-SUPAERO (FRANCE)
Université Toulouse III - Paul Sabatier - UT3 (FRANCE)
Université Toulouse - Jean Jaurès - UT2J (FRANCE)
Université Toulouse 1 Capitole - UT1 (FRANCE)
Institut des Sciences de la mécanique et Applications industrielles (IMSIA - UMR 9219)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-EDF R&D (EDF R&D)
EDF (EDF)-EDF (EDF)
Institut de recherche en informatique de Toulouse (IRIT)
Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université de Toulouse (UT)-Toulouse Mind & Brain Institut (TMBI)
Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)
Département d'Ingénierie des Systèmes Complexes (DISC)
Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO)
Source :
Computational Mechanics, Computational Mechanics, 2017, 60 (6), pp.969-982. ⟨10.1007/s00466-017-1450-z⟩
Publication Year :
2017
Publisher :
Springer Science and Business Media LLC, 2017.

Abstract

International audience; Many applications in structural mechanics require the numerical solution of sequences of linear systems typically issued from a finite element discretization of the governing equations on fine meshes. The method of Lagrange multipliers is often used to take into account mechanical constraints. The resulting matrices then exhibit a saddle point structure and the iterative solution of such preconditioned linear systems is considered as challenging. A popular strategy is then to combine preconditioning and deflation to yield an efficient method.We propose an alternative that is applicable to the general case and not only to matrices with a saddle point structure. In this approach, we consider to update an existing algebraic or application-based preconditioner, using specific available information exploiting the knowledge of an approximate invariant subspace or of matrix-vector products. The resulting preconditioner has the form of a limited memory quasi-Newton matrix and requires a small number of linearly independent vectors. Numerical experiments performed on three large-scale applications in elasticity highlight the relevance of the new approach. We show that the proposed method outperforms the deflation method when considering sequences of linear systems with varying matrices.

Details

ISSN :
14320924 and 01787675
Volume :
60
Database :
OpenAIRE
Journal :
Computational Mechanics
Accession number :
edsair.doi.dedup.....f4cb278d953a583625a7fad926b0d53c
Full Text :
https://doi.org/10.1007/s00466-017-1450-z