23 results on '"Gijsen FJH"'
Search Results
2. Effects of intima stiffness and plaque morphology
- Author
-
Akyildiz, A.C., Speelman, L, van Brummelen, EH, Gutierrez De La Merced, M.A., Virmani, R, van der Lugt, A., van der Steen, AFW, Wentzel, JJ, and Gijsen, FJH
- Published
- 2011
3. Focal in-stent restenosis near step-up - Roles of low and oscillating shear stress?
- Author
-
Thury, A (Attila), Wentzel, Jolanda, Vinke, RVH, Gijsen, FJH, Schuurbiers, JCH, Krams, R (Rob), Feijter, Pim, Serruys, PWJC (Patrick), Slager, CJ, and Cardiology
- Published
- 2002
4. True three-dimensional reconstructed images showing lumen enlargement after sirolimus-eluting stent implantation [Editorial]
- Author
-
Tanabe, K, Gijsen, FJH, Degertekin, M, Ligthart, Jurgen, Oortman, RM, Serruys, PWJC (Patrick), Slager, CJ, and Cardiology
- Published
- 2002
5. Effects of intima stiffness and plaque morphology
- Author
-
Akyildiz, A.C. (author), Speelman, L (author), van Brummelen, EH (author), Gutierrez De La Merced, M.A. (author), Virmani, R (author), van der Lugt, A. (author), van der Steen, AFW (author), Wentzel, JJ (author), Gijsen, FJH (author), Akyildiz, A.C. (author), Speelman, L (author), van Brummelen, EH (author), Gutierrez De La Merced, M.A. (author), Virmani, R (author), van der Lugt, A. (author), van der Steen, AFW (author), Wentzel, JJ (author), and Gijsen, FJH (author)
- Abstract
3ME Algemeen, Structural Integrity & Composites
- Published
- 2011
- Full Text
- View/download PDF
6. The association between human blood clot analogue computed tomography imaging, composition, contraction, and mechanical characteristics.
- Author
-
Cruts JMH, Giezen JA, van Gaalen K, Beurskens R, Ridwan Y, Dijkshoorn ML, van Beusekom HMM, Boodt N, van der Lugt A, de Vries JJ, de Maat MPM, Gijsen FJH, and Cahalane RME
- Subjects
- Humans, Tomography, X-Ray Computed methods, Thrombectomy methods, Fibrin, Erythrocytes pathology, Thrombosis pathology, Thromboembolism pathology
- Abstract
Background: Clot composition, contraction, and mechanical properties are likely determinants of endovascular thrombectomy success. A pre-interventional estimation of these properties is hypothesized to aid in selecting the most suitable treatment for different types of thrombi. Here we determined the association between the aforementioned properties and computed tomography (CT) characteristics using human blood clot analogues., Methods: Clot analogues were prepared from the blood of 4 healthy human donors with 5 red blood cell (RBC) volume suspensions: 0%, 20%, 40%, 60% and 80% RBCs. Contraction was measured as the weight of the contracted clots as a percentage of the original suspension. The clots were imaged using CT with and without contrast to quantify clot density and density increase. Unconfined compression was performed to determine the high strain compressive stiffness. The RBC content was analysed using H&E staining., Results: The 5 RBC suspensions formed only two groups of clots, fibrin-rich (0% RBCs) and RBC-rich (>90% RBCs), as determined by histology. The density of the fibrin-rich clots was significantly lower (31-38HU) compared to the RBC-rich clots (72-89HU), and the density increase of the fibrin-rich clots was significantly higher (82-127HU) compared to the RBC-rich clots (3-17HU). The compressive stiffness of the fibrin-rich clots was higher (178-1624 kPa) than the stiffness of the RBC-rich clots (6-526 kPa). Additionally, the degree of clot contraction was higher for the fibrin-rich clots (89-96%) compared to the RBC-rich clots (11-77%)., Conclusions: CT imaging clearly reflects clot RBC content and seems to be related to the clot contraction and stiffness. CT imaging might be a useful tool in predicting the thrombus characteristics. However, future studies should confirm these findings by analysing clots with intermediate RBC and platelet content., Competing Interests: I have read the journal’s policy and the authors of this manuscript have the following competing interests: AL and HB received research grants from Stryker and Penumbra for stroke research, all paid to the institution. This does not alter our adherence to PLOS ONE policies on sharing data and materials., (Copyright: © 2023 Cruts et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2023
- Full Text
- View/download PDF
7. Wall shear stress-related plaque growth of lipid-rich plaques in human coronary arteries: an near-infrared spectroscopy and optical coherence tomography study.
- Author
-
Hartman EMJ, De Nisco G, Kok AM, Tomaniak M, Nous FMA, Korteland SA, Gijsen FJH, den Dekker WK, Diletti R, van Mieghem NMDA, Wilschut JM, Zijlstra F, van der Steen AFW, Budde RPJ, Daemen J, and Wentzel JJ
- Subjects
- Humans, Coronary Vessels diagnostic imaging, Spectroscopy, Near-Infrared, Tomography, Optical Coherence, Prospective Studies, Lipids, Plaque, Atherosclerotic, Coronary Artery Disease diagnostic imaging
- Abstract
Aims: Low wall shear stress (WSS) is acknowledged to play a role in plaque development through its influence on local endothelial function. Also, lipid-rich plaques (LRPs) are associated with endothelial dysfunction. However, little is known about the interplay between WSS and the presence of lipids with respect to plaque progression. Therefore, we aimed to study the differences in WSS-related plaque progression between LRPs, non-LRPs, or plaque-free regions in human coronary arteries., Methods and Results: In the present single-centre, prospective study, 40 patients who presented with an acute coronary syndrome successfully underwent near-infrared spectroscopy intravascular ultrasound (NIRS-IVUS) and optical coherence tomography (OCT) of at least one non-culprit vessel at baseline and completed a 1-year follow-up. WSS was computed applying computational fluid dynamics to a three-dimensional reconstruction of the coronary artery based on the fusion of the IVUS-segmented lumen with a CT-derived centreline, using invasive flow measurements as boundary conditions. For data analysis, each artery was divided into 1.5 mm/45° sectors. Plaque growth based on IVUS-derived percentage atheroma volume change was compared between LRPs, non-LRPs, and plaque-free wall segments, as assessed by both OCT and NIRS. Both NIRS- and OCT-detected lipid-rich sectors showed a significantly higher plaque progression than non-LRPs or plaque-free regions. Exposure to low WSS was associated with a higher plaque progression than exposure to mid or high WSS, even in the regions classified as a plaque-free wall. Furthermore, low WSS and the presence of lipids had a synergistic effect on plaque growth, resulting in the highest plaque progression in lipid-rich regions exposed to low shear stress., Conclusion: This study demonstrates that NIRS- and OCT-detected lipid-rich regions exposed to low WSS are subject to enhanced plaque growth over a 1-year follow-up. The presence of lipids and low WSS proves to have a synergistic effect on plaque growth., Competing Interests: Conflict of interest: None declared., (© The Author(s) 2022. Published by Oxford University Press on behalf of the European Society of Cardiology.)
- Published
- 2023
- Full Text
- View/download PDF
8. Tissue-engineered collagenous fibrous cap models to systematically elucidate atherosclerotic plaque rupture.
- Author
-
Wissing TB, Van der Heiden K, Serra SM, Smits AIPM, Bouten CVC, and Gijsen FJH
- Subjects
- Collagen, Fibrosis, Humans, Plaque, Atherosclerotic
- Abstract
A significant amount of vascular thrombotic events are associated with rupture of the fibrous cap that overlie atherosclerotic plaques. Cap rupture is however difficult to predict due to the heterogenous composition of the plaque, unknown material properties, and the stochastic nature of the event. Here, we aim to create tissue engineered human fibrous cap models with a variable but controllable collagen composition, suitable for mechanical testing, to scrutinize the reciprocal relationships between composition and mechanical properties. Myofibroblasts were cultured in 1 × 1.5 cm-sized fibrin-based constrained gels for 21 days according to established (dynamic) culture protocols (i.e. static, intermittent or continuous loading) to vary collagen composition (e.g. amount, type and organization). At day 7, a soft 2 mm ∅ fibrin inclusion was introduced in the centre of each tissue to mimic the soft lipid core, simulating the heterogeneity of a plaque. Results demonstrate reproducible collagenous tissues, that mimic the bulk mechanical properties of human caps and vary in collagen composition due to the presence of a successfully integrated soft inclusion and the culture protocol applied. The models can be deployed to assess tissue mechanics, evolution and failure of fibrous caps or complex heterogeneous tissues in general., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
9. The Correlation Between Wall Shear Stress and Plaque Composition in Advanced Human Carotid Atherosclerosis.
- Author
-
Moerman AM, Korteland S, Dilba K, van Gaalen K, Poot DHJ, van Der Lugt A, Verhagen HJM, Wentzel JJ, van Der Steen AFW, Gijsen FJH, and Van der Heiden K
- Abstract
The role of wall shear stress (WSS) in atherosclerotic plaque development is evident, but the relation between WSS and plaque composition in advanced atherosclerosis, potentially resulting in plaque destabilization, is a topic of discussion. Using our previously developed image registration pipeline, we investigated the relation between two WSS metrics, time-averaged WSS (TAWSS) and the oscillatory shear index (OSI), and the local histologically determined plaque composition in a set of advanced human carotid plaques. Our dataset of 11 carotid endarterectomy samples yielded 87 histological cross-sections, which yielded 511 radial bins for analysis. Both TAWSS and OSI values were subdivided into patient-specific low, mid, and high tertiles. This cross-sectional study shows that necrotic core (NC) size and macrophage area are significantly larger in areas exposed to high TAWSS or low OSI. Local TAWSS and OSI tertile values were generally inversely related, as described in the literature, but other combinations were also found. Investigating the relation between plaque vulnerability features and different combinations of TAWSS and OSI tertile values revealed a significantly larger cap thickness in areas exposed to both low TAWSS and low OSI. In conclusion, our study confirmed previous findings, correlating high TAWSS to larger macrophage areas and necrotic core sizes. In addition, our study demonstrated new relations, correlating low OSI to larger macrophage areas, and a combination of low TAWSS and low OSI to larger cap thickness., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Moerman, Korteland, Dilba, van Gaalen, Poot, van Der Lugt, Verhagen, Wentzel, van Der Steen, Gijsen and Van der Heiden.)
- Published
- 2022
- Full Text
- View/download PDF
10. The Association Between Time-Varying Wall Shear Stress and the Development of Plaque Ulcerations in Carotid Arteries From the Plaque at Risk Study.
- Author
-
Dilba K, van Dam-Nolen DHK, Korteland SA, van der Kolk AG, Kassem M, Bos D, Koudstaal PJ, Nederkoorn PJ, Hendrikse J, Kooi ME, Gijsen FJH, van der Steen AFW, van der Lugt A, and Wentzel JJ
- Abstract
Background and Purpose: Shear stress (WSS) is involved in the pathophysiology of atherosclerotic disease and might affect plaque ulceration. In this case-control study, we compared carotid plaques that developed a new ulcer during follow-up and plaques that remained silent for their exposure to time-dependent oscillatory shear stress parameters at baseline. Materials and Methods: Eighteen patients who underwent CTA and MRI of their carotid arteries at baseline and 2 years follow-up were included. These 18 patients consisted of six patients who demonstrated a new ulcer and 12 control patients selected from a larger cohort with similar MRI-based plaque characteristics as the ulcer group. (Oscillatory) WSS parameters [time average WSS, oscillatory shear index (OSI), and relative residence time (RRT)] were calculated using computational fluid dynamics applying the MRI-based geometry of the carotid arteries and compared among plaques (wall thickness>2 mm) with and without ulceration (Mann-Whitney U test) and ulcer-site vs. non-ulcer-site within the plaque (Wilcoxon signed rank test). More detailed analysis on ulcer cases was performed and the predictive value of oscillatory WSS parameters was calculated using linear and logistic mixed-effect regression models. Results: The ulcer group demonstrated no difference in maximum WSS [9.9 (6.6-18.5) vs. 13.6 (9.7-17.7) Pa, p = 0.349], a lower maximum OSI [0.04 (0.01-0.10) vs. 0.12 (0.06-0.20) p = 0.019] and lower maximum RRT [1.25 (0.78-2.03) Pa
-1 vs. 2.93 (2.03-5.28) Pa-1 , p = 0.011] compared to controls. The location of the ulcer (ulcer-site) within the plaque was not always at the maximal WSS, but demonstrated higher average WSS, lower average RRT and OSI at the ulcer-site compared to the non-ulcer-sites. High WSS (WSS>4.3 Pa) and low RRT (RRT < 0.25 Pa) were associated with ulceration with an odds ratio of 3.6 [CI 2.1-6.3] and 2.6 [CI 1.54-4.44] respectively, which remained significant after adjustment for wall thickness. Conclusion: In this explorative study, ulcers were not exclusively located at plaque regions exposed to the highest WSS, OSI, or RRT, but high WSS and low RRT regions had a significantly higher odds to present ulceration within the plaque even after adjustment for wall thickness., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 Dilba, van Dam-Nolen, Korteland, van der Kolk, Kassem, Bos, Koudstaal, Nederkoorn, Hendrikse, Kooi, Gijsen, van der Steen, van der Lugt and Wentzel.)- Published
- 2021
- Full Text
- View/download PDF
11. The definition of low wall shear stress and its effect on plaque progression estimation in human coronary arteries.
- Author
-
Hartman EMJ, De Nisco G, Gijsen FJH, Korteland SA, van der Steen AFW, Daemen J, and Wentzel JJ
- Subjects
- Aged, Biomechanical Phenomena, Disease Progression, Female, Humans, Male, Middle Aged, Stress, Mechanical, Coronary Artery Disease pathology, Coronary Vessels pathology, Plaque, Atherosclerotic pathology
- Abstract
Wall shear stress (WSS), the frictional force of the blood on the vessel wall, plays a crucial role in atherosclerotic plaque development. Low WSS has been associated with plaque growth, however previous research used different approaches to define low WSS to investigate its effect on plaque progression. In this study, we used four methodologies to allocate low, mid and high WSS in one dataset of human coronary arteries and investigated the predictive power of low WSS for plaque progression. Coronary reconstructions were based on multimodality imaging, using intravascular ultrasound and CT-imaging. Vessel-specific flow was measured using Doppler wire and computational fluid dynamics was performed to calculate WSS. The absolute WSS range varied greatly between the coronary arteries. On the population level, the established pattern of most plaque progression at low WSS was apparent in all methodologies defining the WSS categories. However, for the individual patient, when using measured flow to determine WSS, the absolute WSS values range so widely, that the use of absolute thresholds to determine low WSS was not appropriate to identify regions at high risk for plaque progression., (© 2021. The Author(s).)
- Published
- 2021
- Full Text
- View/download PDF
12. Mechanical Characterization of Thrombi Retrieved With Endovascular Thrombectomy in Patients With Acute Ischemic Stroke.
- Author
-
Boodt N, Snouckaert van Schauburg PRW, Hund HM, Fereidoonnezhad B, McGarry JP, Akyildiz AC, van Es ACGM, De Meyer SF, Dippel DWJ, Lingsma HF, van Beusekom HMM, van der Lugt A, and Gijsen FJH
- Subjects
- Aged, Aged, 80 and over, Brain Ischemia pathology, Brain Ischemia physiopathology, Endovascular Procedures instrumentation, Female, Humans, Ischemic Stroke pathology, Ischemic Stroke physiopathology, Male, Middle Aged, Thrombectomy instrumentation, Thrombosis pathology, Thrombosis physiopathology, Biomechanical Phenomena physiology, Brain Ischemia surgery, Endovascular Procedures methods, Ischemic Stroke surgery, Thrombectomy methods, Thrombosis surgery
- Abstract
Background and Purpose: Mechanical properties of thromboemboli play an important role in the efficacy of endovascular thrombectomy (EVT) for acute ischemic stroke. However, very limited data on mechanical properties of human stroke thrombi are available. We aimed to mechanically characterize thrombi retrieved with EVT, and to assess the relationship between thrombus composition and thrombus stiffness., Methods: Forty-one thrombi from 19 patients with acute stroke who underwent EVT between July and October 2019 were mechanically analyzed, directly after EVT. We performed unconfined compression experiments and determined tangent modulus at 75% strain (Et75) as a measure for thrombus stiffness. Thrombi were histologically analyzed for fibrin/platelets, erythrocytes, leukocytes, and platelets, and we assessed the relationship between histological components and Et75 with univariable and multivariable linear mixed regression., Results: Median Et75 was 560 (interquartile range, 393–1161) kPa. In the multivariable analysis, fibrin/platelets were associated with increased Et75 (aβ, 9 [95% CI, 5 to 13]) kPa, erythrocytes were associated with decreased Et75% (aβ, −9 [95% CI, −5 to −13]) kPa. We found no association between leukocytes and Et75. High platelet values were strongly associated with increased Et75 (aβ, 56 [95% CI, 38–73])., Conclusions: Fibrin/platelet content of thrombi retrieved with EVT for acute ischemic stroke is strongly associated with increased thrombus stiffness. For thrombi with high platelet values, there was a very strong relationship with thrombus stiffness. Our data provide a basis for future research on the development of next-generation EVT devices tailored to thrombus composition.
- Published
- 2021
- Full Text
- View/download PDF
13. Morphometric and Mechanical Analyses of Calcifications and Fibrous Plaque Tissue in Carotid Arteries for Plaque Rupture Risk Assessment.
- Author
-
Gijsen FJH, Vis B, Barrett HE, Zadpoor AA, Verhagen HJ, Bos D, van der Steen AFW, and Akyildiz AC
- Subjects
- Carotid Arteries diagnostic imaging, Humans, Risk Assessment, Stress, Mechanical, Calcinosis diagnostic imaging, Carotid Stenosis diagnostic imaging, Plaque, Atherosclerotic diagnostic imaging
- Abstract
Objective: Atherosclerotic plaque rupture in carotid arteries is a major source of cerebrovascular events. Calcifications are highly prevalent in carotid plaques, but their role in plaque rupture remains poorly understood. This work studied the morphometric features of calcifications in carotid plaques and their effect on the stress distribution in the fibrous plaque tissue at the calcification interface, as a potential source of plaque rupture and clinical events., Methods: A comprehensive morphometric analysis of 65 histology cross-sections from 16 carotid plaques was performed to identify the morphology (size and shape) and location of plaque calcifications, and the fibrous tissue fiber organization around them. Calcification-specific finite element models were constructed to examine the fibrous plaque tissue stresses at the calcification interface. Statistical correlation analysis was performed to elucidate the impact of calcification morphology and fibrous tissue organization on interface stresses., Results: Hundred-seventy-one calcifications were identified on the histology cross-sections, which showed great variation in morphology. Four distinct patterns of fiber organization in the plaque tissue were observed around the calcification. They were termed as attached, pushed-aside, encircling and random patterns. The stress analyses showed that calcifications are correlated with high interface stresses, which might be comparable to or even above the plaque strength. The stress levels depended on the calcification morphology and fiber organization. Thicker calcification with a circumferential slender shape, located close to the lumen were correlated most prominently to high interface stresses., Conclusion: Depending on its morphology and the fiber organization around it, a calcification in an atherosclerotic plaque can act as a stress riser and cause high interface stresses., Significance: This study demonstrated the potential of calcifications in atherosclerotic plaques to cause elevated stresses in plaque tissue and provided a biomechanical explanation for the histopathological findings of calcification-associated plaque rupture.
- Published
- 2021
- Full Text
- View/download PDF
14. Lipid signature of advanced human carotid atherosclerosis assessed by mass spectrometry imaging.
- Author
-
Moerman AM, Visscher M, Slijkhuis N, Van Gaalen K, Heijs B, Klein T, Burgers PC, De Rijke YB, Van Beusekom HMM, Luider TM, Verhagen HJM, Van der Steen AFW, Gijsen FJH, Van der Heiden K, and Van Soest G
- Abstract
Carotid atherosclerosis is a risk factor for ischemic stroke, one of the main causes of mortality and disability worldwide. The disease is characterized by plaques, heterogeneous deposits of lipids, and necrotic debris in the vascular wall, which grow gradually and may remain asymptomatic for decades. However, at some point a plaque can evolve to a high-risk plaque phenotype, which may trigger a cerebrovascular event. Lipids play a key role in the development and progression of atherosclerosis, but the nature of their involvement is not fully understood. Using matrix-assisted laser desorption/ionization mass spectrometry imaging, we visualized the distribution of approximately 200 different lipid signals, originating of >90 uniquely assigned species, in 106 tissue sections of 12 human carotid atherosclerotic plaques. We performed unsupervised classification of the mass spectrometry dataset, as well as a histology-directed multivariate analysis. These data allowed us to extract the spatial lipid patterns associated with morphological plaque features in advanced plaques from a symptomatic population, revealing spatial lipid patterns in atherosclerosis and their relation to histological tissue type. The abundances of sphingomyelin and oxidized cholesteryl ester species were elevated specifically in necrotic intima areas, whereas diacylglycerols and triacylglycerols were spatially correlated to areas containing the coagulation protein fibrin. These results demonstrate a clear colocalization between plaque features and specific lipid classes, as well as individual lipid species in high-risk atherosclerotic plaques., Competing Interests: Conflict of interest The authors declare that they have no conflicts of interest with the contents of this article., (Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
15. Contemporary rationale for non-invasive imaging of adverse coronary plaque features to identify the vulnerable patient: a Position Paper from the European Society of Cardiology Working Group on Atherosclerosis and Vascular Biology and the European Association of Cardiovascular Imaging.
- Author
-
Dweck MR, Maurovich-Horvat P, Leiner T, Cosyns B, Fayad ZA, Gijsen FJH, Van der Heiden K, Kooi ME, Maehara A, Muller JE, Newby DE, Narula J, Pontone G, Regar E, Serruys PW, van der Steen AFW, Stone PH, Waltenberger JL, Yuan C, Evans PC, Lutgens E, Wentzel JJ, and Bäck M
- Subjects
- Biology, Humans, Atherosclerosis, Cardiology, Coronary Artery Disease diagnostic imaging, Plaque, Atherosclerotic diagnostic imaging
- Abstract
Atherosclerotic plaques prone to rupture may cause acute myocardial infarction (MI) but can also heal without causing an event. Certain common histopathological features, including inflammation, a thin fibrous cap, positive remodelling, a large necrotic core, microcalcification, and plaque haemorrhage are commonly found in plaques causing an acute event. Recent advances in imaging techniques have made it possible to detect not only luminal stenosis and overall coronary atherosclerosis burden but also to identify such adverse plaque characteristics. However, the predictive value of identifying individual adverse atherosclerotic plaques for future events has remained poor. In this Position Paper, the relationship between vulnerable plaque imaging and MI is addressed, mainly for non-invasive assessments but also for invasive imaging of adverse plaques in patients undergoing invasive coronary angiography. Dynamic changes in atherosclerotic plaque development and composition may indicate that an adverse plaque phenotype should be considered at the patient level rather than for individual plaques. Imaging of adverse plaque burden throughout the coronary vascular tree, in combination with biomarkers and biomechanical parameters, therefore holds promise for identifying subjects at increased risk of MI and for guiding medical and invasive treatment., (Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2020. For permissions, please email: journals.permissions@oup.com.)
- Published
- 2020
- Full Text
- View/download PDF
16. Vulnerable plaques and patients: state-of-the-art.
- Author
-
Tomaniak M, Katagiri Y, Modolo R, de Silva R, Khamis RY, Bourantas CV, Torii R, Wentzel JJ, Gijsen FJH, van Soest G, Stone PH, West NEJ, Maehara A, Lerman A, van der Steen AFW, Lüscher TF, Virmani R, Koenig W, Stone GW, Muller JE, Wijns W, Serruys PW, and Onuma Y
- Subjects
- Death, Sudden, Cardiac etiology, Death, Sudden, Cardiac prevention & control, Humans, Acute Coronary Syndrome, Atherosclerosis, Coronary Artery Disease, Coronary Disease, Plaque, Atherosclerotic diagnostic imaging
- Abstract
Despite advanced understanding of the biology of atherosclerosis, coronary heart disease remains the leading cause of death worldwide. Progress has been challenging as half of the individuals who suffer sudden cardiac death do not experience premonitory symptoms. Furthermore, it is well-recognized that also a plaque that does not cause a haemodynamically significant stenosis can trigger a sudden cardiac event, yet the majority of ruptured or eroded plaques remain clinically silent. In the past 30 years since the term 'vulnerable plaque' was introduced, there have been major advances in the understanding of plaque pathogenesis and pathophysiology, shifting from pursuing features of 'vulnerability' of a specific lesion to the more comprehensive goal of identifying patient 'cardiovascular vulnerability'. It has been also recognized that aside a thin-capped, lipid-rich plaque associated with plaque rupture, acute coronary syndromes (ACS) are also caused by plaque erosion underlying between 25% and 60% of ACS nowadays, by calcified nodule or by functional coronary alterations. While there have been advances in preventive strategies and in pharmacotherapy, with improved agents to reduce cholesterol, thrombosis, and inflammation, events continue to occur in patients receiving optimal medical treatment. Although at present the positive predictive value of imaging precursors of the culprit plaques remains too low for clinical relevance, improving coronary plaque imaging may be instrumental in guiding pharmacotherapy intensity and could facilitate optimal allocation of novel, more aggressive, and costly treatment strategies. Recent technical and diagnostic advances justify continuation of interdisciplinary research efforts to improve cardiovascular prognosis by both systemic and 'local' diagnostics and therapies. The present state-of-the-art document aims to present and critically appraise the latest evidence, developments, and future perspectives in detection, prevention, and treatment of 'high-risk' plaques occurring in 'vulnerable' patients., (Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2020. For permissions, please email: journals.permissions@oup.com.)
- Published
- 2020
- Full Text
- View/download PDF
17. Multidirectional wall shear stress promotes advanced coronary plaque development: comparing five shear stress metrics.
- Author
-
Hoogendoorn A, Kok AM, Hartman EMJ, de Nisco G, Casadonte L, Chiastra C, Coenen A, Korteland SA, Van der Heiden K, Gijsen FJH, Duncker DJ, van der Steen AFW, and Wentzel JJ
- Subjects
- Animals, Coronary Artery Disease diagnostic imaging, Coronary Artery Disease etiology, Coronary Artery Disease pathology, Coronary Vessels diagnostic imaging, Coronary Vessels pathology, Disease Models, Animal, Disease Progression, Hypercholesterolemia complications, Male, Stress, Mechanical, Sus scrofa, Time Factors, Coronary Artery Disease physiopathology, Coronary Circulation, Coronary Vessels physiopathology, Models, Cardiovascular, Plaque, Atherosclerotic
- Abstract
Aims: Atherosclerotic plaque development has been associated with wall shear stress (WSS). However, the multidirectionality of blood flow, and thus of WSS, is rarely taken into account. The purpose of this study was to comprehensively compare five metrics that describe (multidirectional) WSS behaviour and assess how WSS multidirectionality affects coronary plaque initiation and progression., Methods and Results: Adult familial hypercholesterolaemic pigs (n = 10) that were fed a high-fat diet, underwent imaging of the three main coronary arteries at three-time points [3 (T1), 9 (T2), and 10-12 (T3) months]. Three-dimensional geometry of the arterial lumen, in combination with local flow velocity measurements, was used to calculate WSS at T1 and T2. For analysis, arteries were divided into 3 mm/45° sectors (n = 3648). Changes in wall thickness and final plaque composition were assessed with near-infrared spectroscopy-intravascular ultrasound, optical coherence tomography imaging, and histology. Both in pigs with advanced and mild disease, the highest plaque progression rate was exclusively found at low time-averaged WSS (TAWSS) or high multidirectional WSS regions at both T1 and T2. However, the eventually largest plaque growth was located in regions with initial low TAWSS or high multidirectional WSS that, over time, became exposed to high TAWSS or low multidirectional WSS at T2. Besides plaque size, also the presence of vulnerable plaque components at the last time point was related to low and multidirectional WSS. Almost all WSS metrics had good predictive values for the development of plaque (47-50%) and advanced fibrous cap atheroma (FCA) development (59-61%)., Conclusion: This study demonstrates that low and multidirectional WSS promote both initiation and progression of coronary atherosclerotic plaques. The high-predictive values of the multidirectional WSS metrics for FCA development indicate their potential as an additional clinical marker for the vulnerable disease., (© The Author(s) 2019. Published by Oxford University Press on behalf of the European Society of Cardiology.)
- Published
- 2020
- Full Text
- View/download PDF
18. An MRI-based method to register patient-specific wall shear stress data to histology.
- Author
-
Moerman AM, Dilba K, Korteland S, Poot DHJ, Klein S, van der Lugt A, Rouwet EV, van Gaalen K, Wentzel JJ, van der Steen AFW, Gijsen FJH, and Van der Heiden K
- Subjects
- Female, Humans, Male, Carotid Arteries diagnostic imaging, Carotid Arteries physiopathology, Carotid Arteries surgery, Carotid Artery Diseases diagnostic imaging, Carotid Artery Diseases physiopathology, Carotid Artery Diseases surgery, Endarterectomy, Hemorheology, Magnetic Resonance Angiography, Plaque, Atherosclerotic diagnostic imaging, Plaque, Atherosclerotic physiopathology, Plaque, Atherosclerotic surgery, Shear Strength
- Abstract
Wall shear stress (WSS), the frictional force exerted on endothelial cells by blood flow, is hypothesised to influence atherosclerotic plaque growth and composition. We developed a methodology for image registration of MR and histology images of advanced human carotid plaques and corresponding WSS data, obtained by MRI and computational fluid dynamics. The image registration method requires four types of input images, in vivo MRI, ex vivo MRI, photographs of transversally sectioned plaque tissue and histology images. These images are transformed to a shared 3D image domain by applying a combination of rigid and non-rigid registration algorithms. Transformation matrices obtained from registration of these images are used to transform subject-specific WSS data to the shared 3D image domain as well. WSS values originating from the 3D WSS map are visualised in 2D on the corresponding lumen locations in the histological sections and divided into eight radial segments. In each radial segment, the correlation between WSS values and plaque composition based on histological parameters can be assessed. The registration method was successfully applied to two carotid endarterectomy specimens. The resulting matched contours from the imaging modalities had Hausdorff distances between 0.57 and 0.70 mm, which is in the order of magnitude of the in vivo MRI resolution. We simulated the effect of a mismatch in the rigid registration of imaging modalities on WSS results by relocating the WSS data with respect to the stack of histology images. A 0.6 mm relocation altered the mean WSS values projected on radial bins on average by 0.59 Pa, compared to the output of original registration. This mismatch of one image slice did not change the correlation between WSS and plaque thickness. In conclusion, we created a method to investigate correlations between WSS and plaque composition., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2019
- Full Text
- View/download PDF
19. Flow Patterns in Carotid Webs: A Patient-Based Computational Fluid Dynamics Study.
- Author
-
Compagne KCJ, Dilba K, Postema EJ, van Es ACGM, Emmer BJ, Majoie CBLM, van Zwam WH, Dippel DWJ, Wentzel JJ, van der Lugt A, and Gijsen FJH
- Subjects
- Brain Ischemia diagnostic imaging, Brain Ischemia pathology, Brain Ischemia physiopathology, Carotid Arteries diagnostic imaging, Cerebrovascular Circulation physiology, Computed Tomography Angiography, Female, Humans, Hydrodynamics, Male, Middle Aged, Netherlands, Stress, Mechanical, Stroke diagnostic imaging, Thrombosis etiology, Carotid Arteries physiopathology, Hemodynamics physiology, Stroke pathology, Stroke physiopathology
- Abstract
Background and Purpose: Carotid webs are increasingly recognized as an important cause of (recurrent) ischemic stroke in patients without other cardiovascular risk factors. Hemodynamic flow patterns induced by these lesions might be associated with thrombus formation. The aim of our study was to evaluate flow patterns of carotid webs using computational fluid dynamics., Materials and Methods: Patients with a carotid web in the Multicenter Randomized Clinical Trial of Endovascular Treatment of Acute Ischemic Stroke in the Netherlands (MR CLEAN) were selected for hemodynamic evaluation with computational fluid dynamics models based on lumen segmentations obtained from CT angiography scans. Hemodynamic parameters, including the area of recirculation zone, time-averaged wall shear stress, transverse wall shear stress, and the oscillatory shear index, were assessed and compared with the contralateral carotid bifurcation., Results: In our study, 9 patients were evaluated. Distal to the carotid webs, recirculation zones were significantly larger compared with the contralateral bifurcation (63 versus 43 mm
2 , P = .02). In the recirculation zones of the carotid webs and the contralateral carotid bifurcation, time-averaged wall shear stress values were comparable (both: median, 0.27 Pa; P = .30), while transverse wall shear stress and oscillatory shear index values were significantly higher in the recirculation zone of carotid webs (median, 0.25 versus 0.21 Pa; P = .02 and 0.39 versus 0.30 Pa; P = .04). At the minimal lumen area, simulations showed a significantly higher time-averaged wall shear stress in the web compared with the contralateral bifurcation (median, 0.58 versus 0.45 Pa; P = .01)., Conclusions: Carotid webs are associated with increased recirculation zones and regional increased wall shear stress metrics that are associated with disturbed flow. These findings suggest that a carotid web might stimulate thrombus formation, which increases the risk of acute ischemic stroke., (© 2019 by American Journal of Neuroradiology.)- Published
- 2019
- Full Text
- View/download PDF
20. High Frame Rate Ultrasound Particle Image Velocimetry for Estimating High Velocity Flow Patterns in the Left Ventricle.
- Author
-
Voorneveld J, Muralidharan A, Hope T, Vos HJ, Kruizinga P, van der Steen AFW, Gijsen FJH, Kenjeres S, de Jong N, and Bosch JG
- Subjects
- Contrast Media, Echocardiography instrumentation, Equipment Design, Humans, Models, Cardiovascular, Phantoms, Imaging, Echocardiography methods, Heart Ventricles diagnostic imaging, Image Processing, Computer-Assisted methods, Rheology methods
- Abstract
Echocardiographic determination of multicomponent blood flow dynamics in the left ventricle remains a challenge. In this paper, we compare contrast enhanced, high frame rate (HFR) (1000 frames/s) echo-particle image velocimetry (ePIV) against optical particle image velocimetry (oPIV, gold standard), in a realistic left ventricular (LV) phantom. We find that ePIV compares well to oPIV, even for the high velocity inflow jet (normalized RMSE = 9% ± 1%). In addition, we perform the method of proper orthogonal decomposition, to better qualify and quantify the differences between the two modalities. We show that ePIV and oPIV resolve very similar flow structures, especially for the lowest order mode with a cosine similarity index of 86%. The coarser resolution of ePIV does result in increased variance and blurring of smaller flow structures when compared to oPIV. However, both modalities are in good agreement with each other for the modes that constitute the bulk of the kinetic energy. We conclude that HFR ePIV can accurately estimate the high velocity diastolic inflow jet and the high energy flow structures in an LV setting.
- Published
- 2018
- Full Text
- View/download PDF
21. The effect of the heart rate lowering drug Ivabradine on hemodynamics in atherosclerotic mice.
- Author
-
Xing R, Moerman AM, Ridwan RY, Gaalen KV, Meester EJ, van der Steen AFW, Evans PC, Gijsen FJH, and Van der Heiden K
- Subjects
- Animals, Atherosclerosis pathology, Cardiovascular Agents pharmacology, Heart Rate drug effects, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, ApoE, Plaque, Atherosclerotic pathology, Stress, Mechanical, Atherosclerosis drug therapy, Disease Models, Animal, Heart Rate physiology, Hemodynamics, Ivabradine pharmacology, Plaque, Atherosclerotic prevention & control
- Abstract
The heart rate lowering drug Ivabradine was shown to improve cardiac outcome in patients with previous heart failure. However, in patients without heart failure, no beneficial effect of Ivabradine was observed. Animal studies suggested a preventive effect of Ivabradine on atherosclerosis which was due to an increase in wall shear stress (WSS), the blood flow-induced frictional force exerted on the endothelium, triggering anti-inflammatory responses. However, data on the effect of Ivabradine on WSS is sparse. We aim to study the effect of Ivabradine on (i) the 3D WSS distribution over a growing plaque and (ii) plaque composition. We induced atherosclerosis in ApoE
-/- mice by placing a tapered cast around the right common carotid artery (RCCA). Five weeks after cast placement, Ivabradine was administered via drinking water (15 mg/kg/day) for 2 weeks, after which the RCCA was excised for histology analyses. Before and after Ivabradine treatment, animals were imaged with Doppler Ultrasound to measure blood velocity. Vessel geometry was obtained using contrast-enhanced micro-CT. Time-averaged WSS during systole, diastole and peak WSS was subsequently computed. Ivabradine significantly decreased heart rate (459 ± 28 bpm vs. 567 ± 32 bpm, p < 0.001). Normalized peak flow significantly increased in the Ivabradine group (124.2% ± 40.5% vs. 87.3% ± 25.4%, p < 0.05), reflected by an increased normalized WSS level during systole (110.7% ± 18.4% vs. 75.4% ± 24.6%, p < 0.05). However, plaque size or composition including plaque area, relative necrotic core area and macrophage content were not altered in mice treated with Ivabradine compared to controls. We conclude that increased WSS in response to Ivabradine treatment did not affect plaque progression in a murine model.- Published
- 2018
- Full Text
- View/download PDF
22. Temporal and spatial changes in wall shear stress during atherosclerotic plaque progression in mice.
- Author
-
Xing R, Moerman AM, Ridwan Y, Daemen MJ, van der Steen AFW, Gijsen FJH, and van der Heiden K
- Abstract
Wall shear stress (WSS) is involved in atherosclerotic plaque initiation, yet its role in plaque progression remains unclear. We aimed to study (i) the temporal and spatial changes in WSS over a growing plaque and (ii) the correlation between WSS and plaque composition, using animal-specific data in an atherosclerotic mouse model. Tapered casts were placed around the right common carotid arteries (RCCA) of ApoE
-/- mice. At 5, 7 and 9 weeks after cast placement, RCCA geometry was reconstructed using contrast-enhanced micro-CT. Lumen narrowing was observed in all mice, indicating the progression of a lumen intruding plaque. Next, we determined the flow rate in the RCCA of each mouse using Doppler Ultrasound and computed WSS at all time points. Over time, as the plaque developed and further intruded into the lumen, absolute WSS significantly decreased. Finally at week 9, plaque composition was histologically characterized. The proximal part of the plaque was small and eccentric, exposed to relatively lower WSS. Close to the cast a larger and concentric plaque was present, exposed to relatively higher WSS. Lower WSS was significantly correlated to the accumulation of macrophages in the eccentric plaque. When pooling data of all animals, correlation between WSS and plaque composition was weak and no longer statistically significant. In conclusion, our data showed that in our mouse model absolute WSS strikingly decreased during disease progression, which was significantly correlated to plaque area and macrophage content. Besides, our study demonstrates the necessity to analyse individual animals and plaques when studying correlations between WSS and plaque composition., Competing Interests: We have no competing interests.- Published
- 2018
- Full Text
- View/download PDF
23. Intima heterogeneity in stress assessment of atherosclerotic plaques.
- Author
-
Akyildiz AC, Speelman L, van Velzen B, Stevens RRF, van der Steen AFW, Huberts W, and Gijsen FJH
- Abstract
Atherosclerotic plaque rupture is recognized as the primary cause of cardiac and cerebral ischaemic events. High structural plaque stresses have been shown to strongly correlate with plaque rupture. Plaque stresses can be computed with finite-element (FE) models. Current FE models employ homogeneous material properties for the heterogeneous atherosclerotic intima. This study aimed to evaluate the influence of intima heterogeneity on plaque stress computations. Two-dimensional FE models with homogeneous and heterogeneous intima were constructed from histological images of atherosclerotic human coronaries ( n = 12). For homogeneous models, a single stiffness value was employed for the entire intima. For heterogeneous models, the intima was subdivided into four clusters based on the histological information and different stiffness values were assigned to the clusters. To cover the reported local intima stiffness range, 100 cluster stiffness combinations were simulated. Peak cap stresses (PCSs) from the homogeneous and heterogeneous models were analysed and compared. By using a global variance-based sensitivity analysis, the influence of the cluster stiffnesses on the PCS variation in the heterogeneous intima models was determined. Per plaque, the median PCS values of the heterogeneous models ranged from 27 to 160 kPa, and the PCS range varied between 43 and 218 kPa. On average, the homogeneous model PCS values differed from the median PCS values of heterogeneous models by 14%. A positive correlation ( R
2 = 0.72) was found between the homogeneous model PCS and the PCS range of the heterogeneous models. Sensitivity analysis showed that the highest main sensitivity index per plaque ranged from 0.26 to 0.83, and the average was 0.47. Intima heterogeneity resulted in substantial changes in PCS, warranting stress analyses with heterogeneous intima properties for plaque-specific, high accuracy stress assessment. Yet, computations with homogeneous intima assumption are still valuable to perform sensitivity analyses or parametric studies for testing the effect of plaque geometry on PCS. Moreover, homogeneous intima models can help identify low PCS, stable type plaques with thick caps. Yet, for thin cap plaques, accurate stiffness measurements of the clusters in the cap and stress analysis with heterogeneous cap properties are required to characterize the plaque stability., Competing Interests: We declare we have no competing interests.- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.