Vincent Humblot, Renaud Podor, Jessem Landoulsi, C. Allely, Raisa Grigorieva, B. Nabi, S. Cremel, M. Barreau, Xavier Carrier, T. Sturel, Pascal Drillet, J. Lautru, Christophe Méthivier, Laboratoire de Réactivité de Surface (LRS), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), ArcelorMittal Maizières Research SA, ArcelorMittal, Etude de la Matière en Mode Environnemental (L2ME), Institut de Chimie Séparative de Marcoule (ICSM - UMR 5257), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre for research in Metallurgy (CRM Group), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
International audience; Alsingle bondSi coated boron steels have been of interest for many years because of their superior mechanical properties and their excellent oxidation resistance. These high strength steels are particularly used in hot stamping processes during which the Alsingle bondSi coating undergoes multiple microstructural transformations. In this study, morphology and structure transformations are investigated using an original approach. Most of the time, the coating evolution is studied in cross section, by ex situ characterization of its different layers after heat treatment. In this work, the evolution of the surface is explored for the first time using in situ high-temperature Environmental Scanning Electron Microscopy (HT-ESEM). The austenitization step reproduced in the ESEM chamber allows a precise description of several surface changes occurring, depending on the temperature range. Among them, the main change in morphology is occurring between 650 and 800 °C and is linked to different reactions between aluminium and bi- and ternary Fe-Al-Si phases. The heating rate is also pointed out as a key parameter that affects the surface morphology. In fact, with low heating rates the surface is mostly composed of hexagonal and rectangular elements coming from τ5 (Fe2Al8Si) structuration, while needle-shaped FeAl3 structures are found for higher heating rates. In addition, it is observed that the heating rate also affects the surface roughness depending on the surface morphology. Finally, the origin of the presence of micrometrics pores appearing between 800 and 900 °C at the coating surface is discussed. Our hypothesis supported by ex situ characterization is that they result from formation of a crystallized oxide layer, probably close to α-Al2O3 structure.