1. Long-term effects of nitrogen enrichment in pollen chemistry of a plant species from Brazilian savannas, Pavonia rosa campestris
- Author
-
Luisa Carvalheiro, Maryse Vanderplanck, and Mercedes M.C. Bustamante
- Subjects
brazilian savannas ,global changes ,pollen chemistry ,soil eutrophication ,Evolution ,QH359-425 ,Plant ecology ,QK900-989 - Abstract
Human activities have substantially increased soil nutrient availability during the past decades, affecting plant community composition and plants' nutritional content. Several amino acids found in pollen, the main source of larval diet for bees, affect the development, health, and behaviour of this important group of pollinators. A better understanding of the consequences of global changes on pollen amino acid content can help explain and predict future impacts on bee populations and diversity. This is particularly relevant in regions that are highly exposed to fertilizers due to their importance for global food production, such as the Brazilian savannas (Cerrado), where soils are mostly dystrophic. Here, we use a long-term controlled fertilization experiment conducted in Cerrado and demonstrate that even after 10 years since the last fertilization addition, effects were still detectable on leaf and pollen chemical content. More specifically, pollen amino acid content of Pavonia rosa-campestris (Malvaceae), a species known to be important for the diet of several native bee species, changed because of nitrogen (N) addition. Not only did the overall amino acid content increase with N addition, but its profile was also affected, with the proportion of some amino acids increasing (e.g. isoleucine, leucine, serine, threonine), while decreasing for others (e.g. cysteine). These amino acids can have important effects on larval development and flower visitor behaviour. Further studies evaluating the effects on a diverse set of plant species and the consequent impacts on flower visitation and bee fitness are essential to better understand the full consequences of increased nitrogen availability in nutrient-limited ecosystems such as Cerrado.
- Published
- 2023
- Full Text
- View/download PDF