Back to Search Start Over

Precise and High-Throughput Delivery of Micronutrients in Plants Enabled by Pollen-Inspired Spiny and Biodegradable Microcapsules.

Authors :
Liu M
Cao Y
Li Z
Wang E
Ram RJ
Marelli B
Source :
Advanced materials (Deerfield Beach, Fla.) [Adv Mater] 2024 Jul; Vol. 36 (30), pp. e2401192. Date of Electronic Publication: 2024 Jun 14.
Publication Year :
2024

Abstract

Decarbonizing food production and mitigating agriculture's environmental impact require new technologies for precise delivery of fertilizers and pesticides to plants. The cuticle, a waxy barrier that protects the surface of leaves, causes 60%-90% runoff of fertilizers and pesticides, leading to the wastage of intensive resources, soil depletion, and water bodies pollution. Solutions to mitigate runoff include adding chemicals (e.g., surfactants) to decrease surface tension and enhance cuticles' permeability but have low efficacy. In this study, vapor-induced synergistic differentiation (VISDi) is used to nanomanufacture echinate pollen-like, high payload content (≈50 wt%) microcapsules decorated with robust spines that mechanically disrupt the cuticle and adhere to the leaf. VISDi induces a core-shell structure in the spines, enabling the release of agrochemicals from the microparticles' body into the leaf. As proof of concept, precise and highthroughput delivery of iron fertilizer in Fe-deficient spinach plants is demonstrated. Spray of spiny microparticles improves leaf adhesion by mechanical interlocking, reduces wash-off by an ≈12.5 fold, and enhances chlorophyll content by ≈7.3 times compared to the application of spherical counterparts. Together, these results show that spiny microparticles can mitigate agricultural runoff and provide a high-throughput tool for precise plant drug delivery.<br /> (© 2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.)

Details

Language :
English
ISSN :
1521-4095
Volume :
36
Issue :
30
Database :
MEDLINE
Journal :
Advanced materials (Deerfield Beach, Fla.)
Publication Type :
Academic Journal
Accession number :
38848578
Full Text :
https://doi.org/10.1002/adma.202401192