In this paper, we obtain sufficient conditions for the existence of at least four positive almost periodic solutions to an impulsive delayed periodic plankton allelopathy system with multiple exploited (or harvesting) terms. This result is obtained through the use of Mawhins continuation theorem of coincidence degree theory along with some properties relating to inequalities., {"references":["A. Mukhopadhyay, J. Chattopadhyay, P.K. Tapaswi, \"A delay differential\nequations model of plankton allelopathy\", Mathematical Biosciences,,\nVol.149, pp. 167-189,1998.","A.M. Samoilenko, N.A. Perestyuk, \"Impulsive Differential\nEquations\",World Scientific, Singapore, 1995.","B.X. Yang, J.L. Li, An almost periodic solution for an impulsive\ntwo-species logarithmic population model with time -varying delay,\nMathematical and Computer Modelling, Vol.55 n0o.7-8, pp. 1963-1968,\n2012.","C.Y. He, \"Almost Periodic Differential Equations\", Higher Education\nPublishing House, Beijing (in Chinese), 1992.","D. Hu, Z. Zhang, \"Four positive periodic solutions to a Lotka-Volterra\ncooperative system with harvesting terms\", Nonlinear Anal. RWA., Vol.11,\npp. 1560-1571, 2010.","D.S. Wang, \"Four positive periodic solutions of a delayed plankton\nallelopathy system on time scales with multipoe exploited (or harvesting)\nterms\", IMA Journal of Applied mathematics, Vol.78, pp. 449-473, 2013.","E. L. Rice, Alleopathy, second ed., Academic Press, New York, 1984.","G.T. Stamov, I.M. Stamova, J.O. Alzaut, \"Existence of almost periodic\nsolutions for strongly stable nonlinear impulsive differential-difference\nequations\", Nonlinear Analysis: Hybrid Systems, Vol.6 no.2, pp. 818-823,\n2012.","J.B. Geng, Y.H. Xia, \"Almost periodic solutions of a nonlinear ecological\nmodel\", Commun Nonlinear Sci Numer Simulat, Vol.16, pp.2575-2597,\n2011.\n[10] J. Chattopadhyay, \"Effect of toxic substances on a two-species\ncompetitive system\", Ecol. Modelling, Vol.84, pp. 287-289, 1996.\n[11] J. Dhar, K. S. Jatav, \"Mathematical analysis of a delayed stage-structured\npredator-prey model with impulsive diffusion between two predators\nterritories\", Ecological Complexity, Vol.16, pp. 59-67, 2013.\n[12] J.G. Jia, M.S. Wang, M.L. Li, \"Periodic solutions for impulsive delay\ndifferential equations in the control model of plankton allelopathy\",\nChaos, Solitons and Fractals, Vol.32, pp. 962-968, 2007.\n[13] J. Hou, Z.D. Teng, S.J. Gao, \"Permanence and global stability\nfor nonautonomous Nspecies Lotka-Volterra competitive system with\nimpulses\", Nonlinear Anal. RWA., Vol.11 no.3, pp. 1882-1896, 2010.\n[14] J.M.Smith, Modles in Ecology, Cambridge University, Cambridge, 1974. [15] J. ZHEN, Z.E. MA, \"Periodic Solutions for Delay Differential Equations\nModel of Plankton Allelopathy\", Computers and Mathematics with\nApplications , Vol.44, pp. 491-500, 2002.\n[16] K.H. Zhao, Y.K. Li, \"Four positive periodic solutions to two species\nparasitical system with harvesting terms\", Comput. Math. with Appl.,\nVol.59 no.8, pp. 2703-2710, 2010.\n[17] K.H. Zhao, Y. Ye, \"Four positive periodic solutions to a periodic\nLotka-Volterra predatoryprey system with harvesting terms\", Nonlinear\nAnal. RWA., Vol.11, pp.2448-2455, 2010.\n[18] L. Yang, S.M. Zhong, \"Dynamics of a delayed stage-structured model\nwith impulsive harvesting and diffusion\", Ecological Complexity, Vol.19,\npp. 111-123, 2014.\n[19] M.X. He, F.D. Chen, Z. Li, \"Almost periodic solution of an impulsive\ndifferential equation model of plankton allelopathy\", Nonlinear Analysis:\nReal World Applications,, Vol.11, pp. 2296-2301, 2010.\n[20] M. Zhao, X.T. Wang, H.G.Yu, J. Zhu, \"Dynamics of an ecological model\nwith impulsive control strategy and distributed time delay\", Mathematics\nand Computers in Simulation, Vol.82 no.8, pp. 1432-1444, 2012.\n[21] Q. Wang, Y.Y. Fang, D.C. Lu, \"Existence of four periodic solutions\nfor a generalized delayed ratio-dependent predator-prey system\", Applied\nMathematics and Computation, Vol.247, pp. 623-630 ,2014.\n[22] R. Gaines, J. Mawhin, Coincidence Degree and Nonlinear Differetial\nEquitions, Springer Verlag, Berlin, 1977.\n[23] S.Y. Tang, L.S. Chen, \"The periodic predator-prey Lotka-Volterra model\nwith impulsive effect\", J. Mech. Med. Biol., Vol.2, pp. 1-30, 2002.\n[24] V. Lakshmikantham, D.D. Bainov, P.S. Simeonov, Theory of Impulsive\nDifferential Equations, World Scientific, Singapore, 1989.\n[25] X.H. Wang, J.W. Jia, \"Dynamic of a delayed predator-prey model with\nbirth pulse and impulsive harvesting in a polluted environment\", Physica\nA: Statistical Mechanics and its Applications, Vol.422, pp. 1-15, 2015.\n[26] X.Y. Song and L.S. Chen, \"Periodic solution of a delay differential\nequation of plankton allelopathy\", Acta Math. Sci. Ser. A, Vol.23, pp.\n8-13, 2003.\n[27] Y.K. Li, K.H. Zhao, \"2n positive periodic solutions to n species\nnon-autonomous Lotka-Volterra unidirectional food chains with\nharvesting terms\", Math. Model. Anal., Vol.15, pp. 313-326, 2010.\n[28] Y.K. Li, K.H. Zhao, \"Eight positive periodic solutions to three species\nnon-autonomous Lotka-Volterra cooperative systems with harvesting\nterms\", Topol. Methods Nonlinear Anal., Vol.37, pp. 225-234, 2011.\n[29] Y.K. Li, K.H. Zhao, \"Multiple positive periodic solutions to m-layer\nperiodic Lotka-Volterra network-like multidirectional food-chain with\nharvesting terms\", Anal. Appl., Vol.9, pp. 71-96, 2011.\n[30] Y.K. Li, K.H. Zhao, Y. Ye, \"Multiple positive periodic solutions of\nn species delay competition systems with harvesting terms\", Nonlinear\nAnal. RWA., Vol.12, pp. 1013-1022, 2011.\n[31] Y.K. Li, \"Positive periodic solutions of a periodic neutral delay\nlogistic equation with impulses\", Comput. Math. Appl., Vol.56 no.9, pp.\n2189-2196, 2008.\n[32] Y.K. Li, Y. Ye, \"Multiple positive almost periodic solutions to an\nimpulsive non-autonomous Lotka-Volterra predator-prey system with\nharvesting terms\", Commun. Nonlinear Sci. Numer. Simul., Vol.18 no.11,\npp. 3190-3201, 2013.\n[33] Y. Xie, X.G. Li, \"Almost periodic solutions of single population model\nwith hereditary\", Appl. Math. Comput., Vol.203, pp. 690-697, 2008.\n[34] Z.H. Li, K.H. Zhao, Y.K. Li, \"Multiple positive periodic solutions for a\nnon-autonomous stage-structured predatory-prey system with harvesting\nterms\", Commun. Nonlinear Sci. Numer. Simul., Vol.15, pp. 2140-2148,\n2010.\n[35] Z.J. Du, M. Xu, \"Positive periodic solutions of n-species neutral delayed\nLotka-Volterra competition system with impulsive perturbations\", Applied\nMathematics and Computation, Vol.243, pp. 379-391, 2014.\n[36] Z.J. Du, Y.S. Lv, \"Permanence and almost periodic solution of a\nLotka-Volterra model with mutual interference and time\", Applied\nMathematical Modelling, Vol.37 no.3, pp. 1054-1068, 2013.\n[37] Z.J. Liu, J.H. Wu, Y.P. Chen, M. Haque, \"Impulsive perturbations in\na periodic delay differential equation model of plankton allelopathy\",\nNonlinear Analysis: Real World Applications, Vol.11, pp. 432-445, 2010.\n[38] Z.J. Liu, L.S. Chen, \"Positive periodic solution of a general discrete\nnon-autonomous difference system of plankton allelopathy with delays\",\nJournal of Computational and Applied Mathematics, Vol.197, pp.\n446-456,2006.\n[39] Z.L. He, L.F. Nie, Z.D. Teng, \"Dynamics analysis of a two-species\ncompetitive model with state-dependent impulsive effects\", Journal of\nthe Franklin Institute, Vol.352 no.5, pp. 2090-2112, 2015.\n[40] Z. Li, M.A. Han, F.D. Chen, \"Almost periodic solutions of a discrete\nalmost periodic logistic equation with delay\", Applied Mathematics and\nComputation, Vol.232, pp. 743-751, 2014.\n[41] Z.Q. Zhang, Z. Hou, \"Existence of four positive periodic solutions\nfor a ratio-dependent predator-prey system with multiple exploited (or\nharvesting) terms\", Nonlinear Anal. RWA., Vol.11, pp. 1560-1571, 2010.\n[42] Z. Zhang, T. Tian, \"Multiple positive periodic solutions for a generalized\npredator-prey system with exploited terms\", Nonlinear Anal. RWA., Vol.9,\npp. 26-39, 2008."]}