Back to Search
Start Over
Periodic Solutions for a Two-prey One-predator System on Time Scales
- Publication Year :
- 2011
- Publisher :
- Zenodo, 2011.
-
Abstract
- In this paper, using the Gaines and Mawhin,s continuation theorem of coincidence degree theory on time scales, the existence of periodic solutions for a two-prey one-predator system is studied. Some sufficient conditions for the existence of positive periodic solutions are obtained. The results provide unified existence theorems of periodic solution for the continuous differential equations and discrete difference equations.<br />{"references":["M. Bohner and A Peterson, Dynamic Equations on Times Scales: An\nIntroduction with Applications. Boston: Birkh¨a user, 2001.","M. Bohner and A Peterson, Advances in Dynamic Equations on Time\nScales. Boston: Birkh¨a user, 2003.","S. Hilger, Analysis on measure chains-a unfified approach to continuous\nand discrete calculus. Results in Math. 18 (1990) 18-56.","E. R. Kaufmann and Y. N. Raffoul, Periodic solutions for a neutral\nnonlinear dynamical equation on a time scale. J. Math. Anal. Appl. 319\n(1) (2006) 315-325.","Y. K. Li and H. T. Zhang, Existence of periodic solutions for a periodic\nmutualism model on time scales, J. Math. Anal. Appl. 343(2) (2008)\n818-825.","M. Fazly and M. Hesaaraki, Periodic solutions for predator-prey systems\nwith Beddington-DeAngelis functional response on time scales. Nonlinear\nAnal.: Real World Appl. 9(3) (2008) 1224-1235.","H. J. Li, A. P. Liu and Z. T. Hao, Existence for periodic solutions of a\nratio-dependent predator-prey system with time-varying delays on time\nscales. Anal. Appl. 8(3) (2010) 227-233.","W. P. Zhang, P. Bi and D. M. Zhu, Periodicity in a ratio-dependent\npredator-prey system with stage-structured predator on time scales.\nNonlinear Anal.: Real World Appl. 9(2) (2008) 344-353.","J. Liu, Y. K. Li and L. L. Zhao, On a periodic solution predator-prey\nsystem with time delays on time scales. Commun. Nonlinear Sci. Numer.\nSimulat. 14(8) (2009) 3432-3438.\n[10] H. Baek, Species extiction and permanence of an impulsively controlled\ntwo-prey one-predator system with seasonal effects. BioSystems 98(1)\n(2009) 7-18.\n[11] B. Aulbach and S. Hilger, Linear Dynamical Processes with Inhomogeneous\nTime Scales, Nonlinear Dynamics and Quantum Dynamical\nSystems. Berlin: Akademie Verlage, 1990.\n[12] V. Lakshmikantham, S. Sivasundaram and B. Kaymarkcalan, Dynamic\nSystems on Measure Chains. Boston: Kluwer Academic Publishers, 1996.\n[13] R. E. Gaines and J. L. Mawhin, Coincidence Degree and Nonlinear\nDifferential Equations. Berlin: Springer-verlag, 1997."]}
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....6525d859652f43e1dd53fa5be1c59820
- Full Text :
- https://doi.org/10.5281/zenodo.1060711