1. An Automatic Recognition System for Digital Collections of Indonesian Traditional Houses Using Convolutional Neural Networks for Cultural Heritage Preservation.
- Author
-
Handhayani, Teny, Pawening, Ageng Hadi, and Hendryli, Janson
- Subjects
CONVOLUTIONAL neural networks ,CULTURAL property ,CULTURAL maintenance ,ARCHIPELAGOES ,MODERN society ,MATHEMATICAL convolutions - Abstract
Indonesia is one of the archipelago countries located in Asia and it has diverse cultures. In modern society, Indonesian traditional houses have become rare and need to be preserved. This research is conducted to build a digital collection and to develop an image-based automatic recognition system for Indonesian traditional houses. In this paper, the traditional house images are collected in several ways: on-site image captures, receiving images from volunteers, and collecting public images from Google. The dataset is limited to the collection of building shape images, excluding the interior design. The authors implement Convolutional Neural Networks (ConvNets) to build a model for an automatic recognition system. The experiments run some deep network models: VGG, DenseNet, Inception, Xception, MobileNetV2, NasNetMobile, and EfficientNet. The experiments involve 1526 images of 16 classes. EfficientNet-Lite0 outperforms other models and produces the average F1-score and accuracy of 90.1% and 91.8%, respectively. ConvNets also outperform conventional classifiers. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF