1. Physiological and genetic basis for self-aggregation of a thermophilic hydrogenotrophic methanogen, M ethanothermobacter strain CaT2.
- Author
-
Kosaka, Tomoyuki, Toh, Hidehiro, Fujiyama, Asao, Sakaki, Yoshiyuki, Watanabe, Keiji, Meng, Xian-Ying, Hanada, Satoshi, and Toyoda, Atsushi
- Subjects
METHANOGENS ,METHANOTHERMOBACTER ,HYDROGEN bacteria ,METHANE fermentation ,OXIDATION ,METHANE ,GLYCOSYLTRANSFERASES ,BACTERIAL cell surfaces - Abstract
Several thermophilic hydrogenotrophic methanogens naturally aggregate in their habitats in association with hydrogen-producing bacteria for efficient transfer of the methane fermentation intermediates to produce methane. However, physiology of aggregation and the identity of aggregation-specific genes remain to be elucidated. Here, we isolated and characterized a hydrogen and formate-utilizing M ethanothermobacter sp. CaT2 that is capable of self-aggregation and utilizing formate. CaT2 produced methane from propionate oxidation in association with a syntrophic propionate-oxidizing bacterium faster than other methanogens, including M ethanothermobacter thermautotrophicus Δ H and M ethanothermobacter thermautotrophicus Z-245. CaT2 also aggregated throughout the culture period and was coated with polysaccharides, which was not found on the Δ H and Z-245 cells. Sugar content (particularly of rhamnose and mannose) was also higher in the CaT2 cells than the Δ H and Z-245 cells. Comparative genomic analysis of CaT2 indicated that four candidate genes, all of which encode glycosyltransferase, were involved in aggregation of CaT2. Transcriptional analysis showed that one glycosyltransferase gene was expressed at relatively high levels under normal growth conditions. The polysaccharide layer on the CaT2 cell surface, which is probably assembled by these glycosyltransferases, may be involved in cell aggregation. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF