1. Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering.
- Author
-
Bukov, Marin, D'Alessio, Luca, and Polkovnikov, Anatoli
- Subjects
- *
DYNAMICAL systems , *FLOQUET theory , *SET theory , *MAGNETIC fields , *OPERATOR theory , *QUANTUM theory - Abstract
We give a general overview of the high-frequency regime in periodically driven systems and identify three distinct classes of driving protocols in which the infinite-frequency Floquet Hamiltonian is not equal to the time-averaged Hamiltonian. These classes cover systems, such as the Kapitza pendulum, the Harper–Hofstadter model of neutral atoms in a magnetic field, the Haldane Floquet Chern insulator and others. In all setups considered, we discuss both the infinite-frequency limit and the leading finite-frequency corrections to the Floquet Hamiltonian. We provide a short overview of Floquet theory focusing on the gauge structure associated with the choice of stroboscopic frame and the differences between stroboscopic and non-stroboscopic dynamics. In the latter case, one has to work with dressed operators representing observables and a dressed density matrix. We also comment on the application of Floquet Theory to systems described by static Hamiltonians with well-separated energy scales and, in particular, discuss parallels between the inverse-frequency expansion and the Schrieffer–Wolff transformation extending the latter to driven systems. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF