1. A common F-box gene regulates the leucine homeostasis of Medicago truncatula and Arabidopsis thaliana.
- Author
-
Iantcheva A, Zhiponova M, Revalska M, Heyman J, Dincheva I, Badjakov I, De Geyter N, Boycheva I, Goormachtig S, and De Veylder L
- Subjects
- Homeostasis, Leucine metabolism, Ubiquitin-Protein Ligases genetics, Ubiquitin-Protein Ligases metabolism, Arabidopsis genetics, Arabidopsis metabolism, Arabidopsis Proteins genetics, Arabidopsis Proteins metabolism, F-Box Proteins genetics, F-Box Proteins metabolism, Medicago truncatula genetics, Medicago truncatula metabolism, Plant Proteins genetics, Plant Proteins metabolism
- Abstract
The F-box domain is a conserved structural protein motif that most frequently interacts with the SKP1 protein, the core of the SCFs (SKP1-CULLIN-F-box protein ligase) E3 ubiquitin protein ligases. As part of the SCF complexes, the various F-box proteins recruit substrates for degradation through ubiquitination. In this study, we functionally characterized an F-box gene (MtF-box) identified earlier in a population of Tnt1 retrotransposon-tagged mutants of Medicago truncatula and its Arabidopsis thaliana homolog (AtF-box) using gain- and loss-of-function plants. We highlighted the importance of MtF-box in leaf development of M. truncatula. Protein-protein interaction analyses revealed the 2-isopropylmalate synthase (IPMS) protein as a common interactor partner of MtF-box and AtF-box, being a key enzyme in the biosynthesis pathway of the branched-chain amino acid leucine. For further detailed analysis, we focused on AtF-box and its role during the cell division cycle. Based on this work, we suggest a mechanism for the role of the studied F-box gene in regulation of leucine homeostasis, which is important for growth., (© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.)
- Published
- 2022
- Full Text
- View/download PDF