1. Modeling the anisotropic squeeze flow during hot press consolidation of thermoplastic unidirectional fiber-reinforced tapes.
- Author
-
Kobler, Eva, Birtha, Janos, Marschik, Christian, Straka, Klaus, Steinbichler, Georg, and Schlecht, Sven
- Subjects
- *
FLUID flow , *COMPUTATIONAL fluid dynamics , *THERMOPLASTIC composites , *CARBON fibers , *HOT pressing - Abstract
The anisotropic material behavior of continuous-fiber-reinforced composites that is evident in their mechanical properties should also be considered in their processing. An important step in the processing of thermoplastic unidirectional (UD) fiber-reinforced tapes is consolidation, where a layup consisting of locally welded UD tape layers is firmly bonded. Compression of the molten thermoplastic matrix material during consolidation leads to a squeeze flow, the direction of which is determined by the fibers. This work presents a model that describes the influence of fiber direction on compression and flow behavior, implemented in the computational fluid dynamics (CFD) software tool OpenFOAM®. To validate the simulation results, we performed experiments in a laboratory consolidation unit, capturing the squeeze flow with cameras and then quantifying it by gray-scale analysis. The specimens used were UD polycarbonate tapes (44% carbon fibers by volume) of various sizes and with various fiber directions. The simulation allows prediction of the changes in specimen geometry during consolidation and is a first step towards optimizing the process by avoiding extensive squeeze flow. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF