16 results on '"Munno, G."'
Search Results
2. Field-induced slow magnetic relaxation and magnetocaloric effects in an oxalato-bridged gadolinium(iii)-based 2D MOF.
- Author
-
Orts-Arroyo M, Rabelo R, Carrasco-Berlanga A, Moliner N, Cano J, Julve M, Lloret F, De Munno G, Ruiz-García R, Mayans J, Martínez-Lillo J, and Castro I
- Abstract
The coexistence of field-induced slow magnetic relaxation and moderately large magnetocaloric efficiency in the supra-Kelvin temperature region occurs in the 2D compound [Gd(ox)
3 (H2 O)6 ]n ·4nH2 O (1), a feature that can be exploited in the proof-of-concept design of a new class of slow-relaxing magnetic materials for cryogenic magnetic refrigeration.- Published
- 2021
- Full Text
- View/download PDF
3. Highly efficient temperature-dependent chiral separation with a nucleotide-based coordination polymer.
- Author
-
Bruno R, Marino N, Bartella L, Di Donna L, De Munno G, Pardo E, and Armentano D
- Abstract
We report a new chiral coordination polymer, prepared from the cytidine 5'-monophosphate (CMP) nucleotide, capable of separating efficiently (enantiomeric excess of ca. 100%) racemic mixtures of l- and d-Asp in a temperature-dependent manner. The crystal structure of the host-guest adsorbate, with the d-Asp guest molecules loaded within its channels, could be solved allowing a direct visualization of the chiral recognition process.
- Published
- 2018
- Full Text
- View/download PDF
4. Homochiral self-assembly of biocoordination polymers: anion-triggered helicity and absolute configuration inversion.
- Author
-
Marino N, Armentano D, Pardo E, Vallejo J, Neve F, Di Donna L, and De Munno G
- Abstract
The different natures of the weakly coordinating anions - triflate or perchlorate - in the Cu
2+ -mediated self-assembly of cytidine monophosphate nucleotide play a fundamental role in the homochiral resolution process, yielding one-dimensional copper(ii) coordination polymers of opposite helicity that can be easily inverted, in a reversible way, by changing the nature of the anion as revealed by circular dichroism experiments both in solution and in the solid state.- Published
- 2015
- Full Text
- View/download PDF
5. Towards a better understanding of honeycomb alternating magnetic networks.
- Author
-
Marino N, Armentano D, De Munno G, Lloret F, Cano J, and Julve M
- Abstract
Two new two-dimensional homometallic compounds {[M2(bpm)(ox)2]n·5nH2O} with M = Co(II) (1) and Zn(II) (2) and the mononuclear nickel(II) complex [Ni(bpm)2(ox)]·2H2O (3) [bpm = 2,2'-bipyrimidine and ox = oxalate] have been prepared and structurally characterized. 1 and 2 are isostructural compounds whose structures are made up of oxalate-bridged M(II) cations cross-linked by bis-bidentate bpm molecules to afford a honeycomb layered network extending in the crystallographic ab plane. The layers are eclipsed along the crystallographic c axis and show graphitic-like interactions between the bpm rings. The three-dimensional supramolecular network deriving from such interactions is characterized by hexagonal-shaped channels extending in the same direction. Each M(II) ion in 1 and 2 is tris-chelated with four oxygen atoms from two oxalate groups and two bpm-nitrogen atoms building a distorted octahedral surrounding. The reduced values of the angles subtended by the bis-chelating bpm [77.69(8) (1) and 76.59(8)° (2)] and oxalate [79.69(6) (1) and 80.01(5)° (2)] are the main factors accounting for this distortion. The values of the metal-metal separation through bridging bpm are 5.6956(7) (1) and 5.7572(9) Å (2), whereas those across the bis-bidentate oxalate are 5.4306(4) (1) and 5.4058(5) Å (2). 3 is a neutral mononuclear nickel(II) complex where each metal ion is six-coordinate with four nitrogen atoms from two bpm ligands in a cis arrangement and two oxalate-oxygen atoms building a somewhat distorted octahedral surrounding. The values of the angles subtended at the nickel(II) ion by bpm and oxalate are 78.14(4) and 80.95(5)°, respectively. The magnetic properties of 1 have been investigated in the temperature range 1.9-295 K. They are typical of an overall antiferromagnetic coupling with a maximum of the magnetic susceptibility at 22.0 K. The analysis of the susceptibility data of 1 through an effective spin Hamiltonian allowed a satisfactory simulation in the temperature range 10-295 K with the best-fit parameters λ = -110 cm(-1), α = 1.1, |Δ| = 400 cm(-1), J(ox) = -11.1 cm(-1) and J(bpm) = -5.0 cm(-1). The values of the antiferromagnetic coupling through bpm and ox in 1 have also been supported by electronic structure calculations based on Density Functional Theory (DFT) and they compare well with those reported in the literature for bpm-bridged dicobalt(II) complexes and oxalate-bridged cobalt(II) chains.
- Published
- 2015
- Full Text
- View/download PDF
6. Enantioselective self-assembly of antiferromagnetic hexacopper(II) wheels with chiral amino acid oxamates.
- Author
-
Grancha T, Ferrando-Soria J, Cano J, Lloret F, Julve M, De Munno G, Armentano D, and Pardo E
- Subjects
- Ligands, Magnetic Phenomena, Stereoisomerism, Coordination Complexes chemistry, Copper chemistry, Valine chemistry
- Abstract
The Cu(2+)-mediated self-assembly of oxamato-based ligands derived from either the (S)- or (R)-enantiomers of the amino acid valine leads to the formation of two antiferromagnetically coupled homochiral anionic hexacopper(II) wheels in the presence of templating tetramethylammonium countercations.
- Published
- 2013
- Full Text
- View/download PDF
7. Multielectron transfer in a dicopper(II) anthraquinophane.
- Author
-
Castellano M, Ruiz-García R, Cano J, Julve M, Lloret F, Journaux Y, De Munno G, and Armentano D
- Abstract
The new dinuclear copper(II) metallacyclophane with the non-innocent N,N'-1,4-bis(oxamate)-9,10-anthraquinone bridging ligand possesses a dual multielectron redox behavior featuring stepwise one-electron oxidation of the antiferromagnetically coupled Cu(II) ions and two-electron reduction of the anthraquinone spacers in a π-stacked anti conformation.
- Published
- 2013
- Full Text
- View/download PDF
8. Ferromagnetic coupling and spin canting behaviour in heterobimetallic Re(IV)M(II/III) (M = Co(II/III), Ni(II)) species.
- Author
-
Martínez-Lillo J, Armentano D, De Munno G, Julve M, Lloret F, and Faus J
- Abstract
Three novel heterobimetallic Re(IV) compounds of formulae [ReBr(4)(μ-ox)M(4,7-Cl(2)phen)(2)]·CH(3)CN·CH(3)NO(2) [M = Co(II) (1) and Ni(II) (2)] and [ReBr(4)(ox)](3)[Co(III)(5,6-dmphen)(3)](2)·CH(3)CN·2CH(3)NO(2)·4H(2)O (3) [ox = oxalate, 4,7-Cl(2)phen = 4,7-dichloro-1,10-phenanthroline and 5,6-dmphen = 5,6-dimethyl-1,10-phenanthroline] have been synthesised and the structures of 1 and 3 determined by single crystal X-ray diffraction. Compound 1 is an oxalato-bridged Re(IV)Co(II) heterodinuclear complex where the [ReBr(4)(ox)](2-) unit acts as a bidentate ligand towards the [Co(4,7-Cl(2)phen)(2)](2+) entity, the separation between Re(IV) and Co(II) across the oxalate being 5.482(1) Å. Compound 3 is an ionic salt whose structure is made up of [Re(IV)Br(4)(ox)](2-) anions and [Co(III)(5,6-dmphen)(3)](3+) cations plus acetonitrile, nitromethane and water as solvent molecules. The magnetic properties of 1-3 were investigated in the temperature range 1.9-300 K. Relatively large ferromagnetic interactions between Re(IV) and M(II) through the bis(bidentate) oxalato occur in 1 and 2 [J(ReM) = +11.0 (1) and +12.2 cm(-1) (2), the Hamiltonian being defined as Ĥ = -J(ReM)Ŝ(Re)·Ŝ(M)] which are explained on the basis of orbital symmetry considerations. A behaviour typical of a magnetically diluted Re(IV) complex with a large and positive value of zero-field splitting for the ground level (D(Re) = +43 cm(-1)) is observed for 3 in the high temperature range, whereas it exhibits spin canting in the low temperature domain as well as magnetic ordering below ca. 4.8 K.
- Published
- 2013
- Full Text
- View/download PDF
9. Synthesis, crystal structure and magnetic properties of an oxalato-bridged Re(IV)Mo(VI) heterobimetallic complex.
- Author
-
Martínez-Lillo J, Armentano D, De Munno G, Lloret F, Julve M, and Faus J
- Abstract
The Re(IV)-Mo(VI) compound of formula (PPh(4))(2)[ReCl(4)(μ-ox)MoO(2)Cl(2)] (1) constitutes the first example of a heterodinuclear oxalato-bridged complex in the coordination chemistry of molybdenum.
- Published
- 2011
- Full Text
- View/download PDF
10. Rhenium(IV) compounds inducing apoptosis in cancer cells.
- Author
-
Martínez-Lillo J, Mastropietro TF, Lappano R, Madeo A, Alberto ME, Russo N, Maggiolini M, and De Munno G
- Subjects
- Humans, Ligands, Molecular Structure, 2,2'-Dipyridyl chemistry, 2,2'-Dipyridyl pharmacology, Antineoplastic Agents chemistry, Antineoplastic Agents pharmacology, Apoptosis drug effects, Cell Line, Tumor drug effects, Organometallic Compounds chemistry, Organometallic Compounds pharmacology, Phenanthrolines chemistry, Phenanthrolines pharmacology, Pyridines chemistry, Pyridines pharmacology, Rhenium chemistry
- Abstract
The anticancer properties of a series of mononuclear Re(IV) compounds of formula ReCl(4)L (where L is bpy = 2,2'-bipyridine; bpym = 2,2'-bipyrimidine; dmbpy = 4,4'-dimethyl-2,2'-bipyridine; phen = 1,10-phenanthroline) were investigated for the first time. All compounds displayed potent in vitro antiproliferative activity against selected cancer cells., (© The Royal Society of Chemistry 2011)
- Published
- 2011
- Full Text
- View/download PDF
11. Spin canting in an unprecedented three-dimensional pyrophosphate- and 2,2'-bipyrimidine-bridged cobalt(II) framework.
- Author
-
Marino N, Mastropietro TF, Armentano D, De Munno G, Doyle RP, Lloret F, and Julve M
- Abstract
The three-dimensional cobalt(ii) compound of formula {[Co(2)(P(2)O(7))(bpym)(2)].12H(2)O}(n), where the pyrophosphate and 2,2'-bipyrimidine act as bridging ligands, is a new example of a spin-canted antiferromagnet with T(c) = 19 K.
- Published
- 2008
- Full Text
- View/download PDF
12. Guanine-containing copper(II) complexes: synthesis, X-ray structures and magnetic properties.
- Author
-
Mastropietro TF, Armentano D, Grisolia E, Zanchini C, Lloret F, Julve M, and De Munno G
- Subjects
- Crystallography, X-Ray, Magnetic Resonance Spectroscopy, Models, Molecular, Copper chemistry, Guanine chemistry
- Abstract
Three new compounds of formula {[Cu(gua)(H(2)O)(3)](BF(4))(SiF(6))(1/2)}(n) (1), {[Cu(gua)(H(2)O)(3)](CF(3)SO(3))(2).H(2)O}(n) (2) and [Cu(gua)(2)(H(2)O)(HCOO)]ClO(4).H(2)O.1/2HCOOH] (3) [gua = 2-amino-1H-purin-6(9H)-one] showing the unprecedented coordination of neutral guanine, have been synthesised and structurally characterized. The structures of the compounds 1 and 2 contain uniform copper(II) chains of formula [Cu(gua)(H(2)O)(3)](n)(2n+), where the copper atoms are bridged by guanine ligands coordinated via N(3) and N(7). The electroneutrality is achieved by uncoordinated tetrafluoroborate and hexafluorosilicate (1) and triflate (2). Each copper atom in 1 and 2 is five-coordinated in a distorted square pyramidal environment: two water molecules in trans positions and the N(3) and N(7a) nitrogen atoms of two guanine ligands build the basal plane whereas a water molecule fills the axial position. The values of the copper-copper separation across the bridging guanine ligand are 7.183(1) (1) and 7.123(1) A (2). is an ionic salt whose structure is made up of mononuclear [Cu(gua)(2)(H(2)O)(HCOO)](+) cations and perchlorate anions plus water and formic acid as crystallization molecules. The two guanine ligands in the cation are coordinated to the copper centre through the N(9) atom. The copper atom in 3 is four-coordinated with two monodentate guanine molecules in the trans position, a water molecule and a monodenate formate ligand building a quasi square planar surrounding. Magnetic susceptibility measurements for 1 and 2 in the temperature range 1.9-300 K show the occurrence of significant intrachain antiferromagnetic interactions between the copper(ii) ions across the guanine bridge [J = -9.6(1) (1) and -10.3(1) cm(-1) (2) with H = -J summation operator(i)S(i).S(i+1)].
- Published
- 2008
- Full Text
- View/download PDF
13. X-ray structure of [ReCl4(mu-ox)Cu(pyim)2]: a new heterobimetallic Re(IV)Cu(II) ferrimagnetic chain.
- Author
-
Martínez-Lillo J, Armentano D, De Munno G, Lloret F, Julve M, and Faus J
- Abstract
A new heterobimetallic Re(IV)Cu(II) compound has been prepared and its crystal structure determined by single-crystal X-ray diffraction; magnetic susceptibility measurements show that this compound behaves as a ferrimagnetic chain with significant antiferromagnetic interactions between Re(IV) and Cu(II) metal ions.
- Published
- 2008
- Full Text
- View/download PDF
14. Ligand effects on the structures and magnetic properties of tricyanomethanide-containing copper(II) complexes.
- Author
-
Yuste C, Bentama A, Stiriba SE, Armentano D, De Munno G, Lloret F, and Julve M
- Subjects
- Crystallography, X-Ray, Ligands, Models, Molecular, Molecular Structure, Organometallic Compounds chemical synthesis, Spectrophotometry, Infrared methods, Temperature, Copper chemistry, Magnetics, Nitriles chemistry, Organometallic Compounds chemistry
- Abstract
The preparation, crystal structure and magnetic properties of four heteroleptic copper(II) complexes with the tricyanomethanide (tcm(-)) and the heterocyclic nitrogen donors 3,6-bis(2-pyridyl)pyridazine (dppn), 2,5-bis(2-pyridyl)pyrazine (2,5-dpp), 2,3-bis(2-pyridyl)pyrazine (2,3-dpp) and 2,3-bis(2-pyridyl)quinoxaline (2,3-dpq) are reported, {[Cu(2)(dppn)(OH)(tcm)(2)] x tcm}(n) (1), {[Cu(2,5-dpp)(tcm)] x tcm}(n) (2), {[Cu(2)(2,3-dpp)(2)(tcm)(3)(H(2)O)(0.5)] x tcm x 0.5H(2)O}(n) (3) and [Cu(2,3-dpq)(tcm)(2)](n) (4). 1 has a ladder-like structure with single mu-1,5-tcm ligands forming the sides and a bis-bidentate dppn and a single mu-hydroxo providing the rung. Each copper atom in 1 exhibits a distorted square pyramidal CuN(4)O surrounding: the basal plane is built by the hydroxo-oxygen, a nitrile-nitrogen atom from a tcm group and one pyrazine and a pyridyl nitrogen atoms from the dppn whereas the apical position is filled by a nitrile-nitrogen atom from a symmetry-related tcm ligand. The structures of 2-4 consists of zig-zag (2 and 3)/linear (4) chains of copper(II) ions which are bridged by either bis-bidentate 2,5-dpp (2) and 2,3-dpp (3) molecules or single mu-1,5-tcm (4) groups. The copper atoms in 2 and 4 are five coordinated with distorted trigonal bipyramidal (2) and square pyramidal (4) CuN(5) surroundings. The axial positions in 2 are occupied by two pyridyl-nitrogen atoms from two 2,5-dpp ligands whereas the trigonal plane is built by a nitrile-nitrogen from a terminally bound tcm group and two pyrazine nitrogen atoms from two 2,5-dpp molecules. The basal plane in 4 is defined by a pyridyl and a pyrazine nitrogen atoms from the bidentate 2,3-dpq ligand and two nitrile nitrogen atoms from two tcm groups (one terminal and the other bridging) whereas the apical position is filled by a nitrile nitrogen from another tcm ligand. The crystallographically independent copper atoms in 3 [Cu(1) and Cu(2)] exhibit elongated octahedral geometries being defined by four nitrogen atoms from two 2,3-dpp groups [Cu(1) and Cu(2)] either two terminally bound tcm ligands [Cu(1)] or a water molecule and a monodentate tcm ligand [Cu(2)] in cis positions. Magnetic susceptibility measurements for 1-4 in the temperature range 1.9-295 K reveal the occurrence of strong [J ca.-1000 cm(-1) (1); H = -JS(A) x S(B)] and weak [J = -0.13 (2), -0.67 (3) and -0.18 cm(-1) (4); H = -J Sigma(I)S(i) x S(i+1)] antiferromagnetic interactions in agreement with the different nature of the exchange pathways involved, diazine and single mu-hydroxo (1) and the extended 2,5-dpp (2), 2,3-dpp (3) and single mu-1,5-tcm (4) bridges with copper-copper separations of 3.363(8) (1), 7.111(1) (2), 6.823(1) and 7.056(1) (3) and 7.446(1) A (4).
- Published
- 2007
- Full Text
- View/download PDF
15. A novel series of rhenium-bipyrimidine complexes: synthesis, crystal structure and electrochemical properties.
- Author
-
Chiozzone R, González R, Kremer C, Cerdá MF, Armentano D, De Munno G, Martínez-Lillo J, and Faus J
- Abstract
Four novel rhenium complexes of formula [ReCl(4)(bpym)] (1), [ReBr(4)(bpym)] (2) PPh(4)[ReCl(4)(bpym)] (3) and NBu(4)[ReBr(4)(bpym)] (4) (bpym = 2,2'-bipyrimidine, PPh(4) = tetraphenylphosphonium cation and NBu(4) = tetrabutylammonium cation), have been synthesized and their crystal structures determined by single-crystal X-ray diffraction. The structures of 1 and 2 consist of [ReX(4)(bpym)] molecules held together by van der Waals forces. In both complexes the Re(iv) central atom is surrounded by four halide anions and two nitrogen atoms of a bpym bidentate ligand in a distorted octahedral environment. The structures of 3 and 4 consist of [ReX(4)(bpym)](-) anions and PPh(4)(+) () or NBu(4)(+) (4) cations. The coordination sphere of the Re(iii) metal ion is the same as in 1 and 2, respectively. However, whereas the Re-X bonds are longer the Re-N bonds are shorter than in 1 and 2. This fact reveals that the bpym ligand forms a stronger bond with Re(iii) than with Re(iv) resulting in a stabilisation of the lower oxidation state. [ReX(4)(bpym)] complexes are easily reduced, chemically and electrochemically, to the corresponding [ReX(4)(bpym)](-) anions. A voltammetric study shows that the electron transference is a reversible process characterized by formal redox potentials of +0.19 V (1) and +0.32 V (2) vs. NHE, in acetonitrile as solvent.
- Published
- 2007
- Full Text
- View/download PDF
16. Synthesis, crystal structures and magnetic properties of cyanide- and phenolate-bridged [M(III)NiII]2 tetranuclear complexes (M=Fe and Cr).
- Author
-
Toma L, Toma LM, Lescouëzec R, Armentano D, De Munno G, Andruh M, Cano J, Lloret F, and Julve M
- Abstract
The binuclear complex NiII2L(H2O)2(ClO4)2(1) and the neutral tetranuclear bimetallic compounds [{M(III)(phen)(CN)4}2{NiII2L(H2O)2}].2CH3CN with M=Fe (2) and Cr (3)[H2L=11,23-dimethyl-3,7,15,19-tetraazatricyclo[19.3.1.1(9,13)]hexacosa-2,7,9,11,13(26),14,19,21(25),22,24-decaene-25,26-diol] have been synthesized and the structures of and determined by single crystal X-ray diffraction. and are isostructural compounds whose structure is made up of centrosymmetric binuclear cations [Ni2(L)(H2O)2]2+ and two peripheral [M(phen)(CN)4]- anions [M=Fe (2) and Cr (3)] acting as monodentate ligands towards the nickel atoms through one of their four cyanide nitrogen atoms. The environment of the metal atoms in 2 and 3 is six-coordinated: two phen-nitrogen and four cyanide-carbon atoms at the iron and chromium atoms and a water molecule, one cyanide-nitrogen and two phenolate-oxygens and two imine-nitrogens from the binucleating ligand L2- at the nickel atom build distorted octahedral surroundings. The values of the FeNi and CrNi separations through the single cyanide bridge are 5.058(1) and 5.174(2)A respectively, whereas the Ni-Ni distances across the double phenolate bridge are 3.098(2)(2) and 3.101(1) A (3). The magnetic properties of have been investigated in the temperature range 1.9-290 K. The magnetic behaviour of corresponds to that of an antiferromagnetically coupled nickel(II) dimer with J=-61.0(1) cm-1, the Hamiltonian being defined as H=-J S(A).S(B). An overall antiferromagnetic behaviour is observed for and with a low-lying singlet spin state. The values of the intramolecular magnetic couplings are J(Fe-Ni)=+17.4(1) cm-1 and J(Ni-Ni(a))=-44.4(1) cm-1 for and J(Cr-Ni)=+11.8(1) cm-1 and J(Ni-Ni(a))=-44.6(1) cm-1 for [H=-J(M-Ni)(S(M).S(Ni)+S(Ma).S(Nia))-J(Ni-Nia)S(Ni)S(Nia)]. Theoretical calculations using methods based on density functional theory (DFT) have been employed on in order to analyze the efficiency of the exchange pathways involved and also to substantiate the exchange coupling parameters.
- Published
- 2005
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.