1. Water Conservation Practices and Nitrogen Fertility for the Reduction of Greenhouse Gas Emissions from Creeping Bentgrass Putting Greens
- Author
-
Kristina S. Walker and Katy E. Chapman
- Subjects
greenhouse gas ,carbon dioxide ,methane ,nitrous oxide ,nitrogen ,irrigation ,Plant culture ,SB1-1110 - Abstract
Irrigation practices that conserve water use have the potential to reduce greenhouse gas (GHG) emissions but may adversely affect turfgrass appearance. The purpose of this study was to identify irrigation practices and N fertilizers that will decrease carbon dioxide (CO2), methane (CH4,), and nitrous oxide (N2O) emissions while evaluating turfgrass color and quality. In both years, supplemental rainfall (SRF) soil moisture content was higher than business as usual (BAU) irrigation and syringing (SYR). Higher soil moisture led to increased fluxes in both soil CO2 and soil N2O. In 2017, the SRF fluxed lower soil CO2 as soil moisture reached levels that restricted respiration. Soil moisture was also an important predictor of soil N2O flux with BAU and SRF having higher soil N2O fluxes. SRF produced the greenest turf from May to July, whereas SRY and SRF produced the greenest turf from August to October in 2016. Both BAU and SRF had the greenest turf in 2017. BAU had the highest turfgrass quality ratings in 2016 followed by SRF and SRY, respectively, whereas in 2017 SRF and SRY had higher turfgrass quality ratings. When adopting water conservation practices to reduce GHG emissions, soil moisture content and site-specific rainfall should be closely monitored to prevent overwatering.
- Published
- 2024
- Full Text
- View/download PDF