Back to Search Start Over

Climate Change Impacts on Future Wheat (Triticum aestivum) Yield, Growth Periods and Irrigation Requirements: A SALTMED Model Simulations Analysis

Authors :
Junaid Nawaz Chauhdary
Hong Li
Ragab Ragab
Md Rakibuzzaman
Azeem Iqbal Khan
Jing Zhao
Nadeem Akbar
Source :
Agronomy, Vol 14, Iss 7, p 1484 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

Climate change poses emerging threats to wheat growth in coming future. These threats need to be explored to ensure sustainable wheat production. To do this, the SALTMED model was calibrated using data from experiments conducted on different levels of irrigation and nitrogen doses. The performance of the SALTMED model was assessed based on values of the root mean square error (RMSE), normalized root mean square error (NRMSE), coefficient of determination (R2) and coefficient of residual mass (CRM) that ranged from 0.23–1.82, 0.09–0.17, 0.91–0.93 and −0.01–0.02, respectively for calibration and 0.31–1.89, 0.11–0.31, 0.87–0.90 and −0.02–0.01, respectively for validation. Projections for future climate scenarios for wheat growth indicated that by the end of the century, sowing dates advanced by nine days under the RCP4.5 scenario and eleven days under the RCP8.5 scenario, while harvesting dates shifted earlier by twenty-four days under RCP4.5 and twenty-eight days under RCP8.5. Consequently, the overall crop duration was shortened by fifteen days under RCP4.5 and eighteen days under RCP8.5. Further simulations revealed that the wheat yield was reduced by 14.2% under RCP4.5 and 21.0% under RCP8.5; the dry matter was reduced by 14.9% under RCP4.5 and 23.3% under RCP8.5; the irrigation amount was expected to increase by 14.9% under RCP4.5 and 18.0% under RCP8.5; and water productivity was expected to be reduced by 25.3% under RCP4.5 and 33.0% under RCP8.5 until the end of century. The hypothetical scenarios showed that adding an extra 20–40% more nitrogen can enhance wheat yield and dry matter by 10.2–23.0% and 11.5–24.6%, respectively, under RCP4.5, and by 12.0–23.4% and 12.9–29.6%, respectively, under RCP8.5. This study offers valuable insights into the effects of climate change on future wheat production so that effective contingency plans could be made by policymakers and adopted by stakeholders for higher wheat productivity.

Details

Language :
English
ISSN :
20734395
Volume :
14
Issue :
7
Database :
Directory of Open Access Journals
Journal :
Agronomy
Publication Type :
Academic Journal
Accession number :
edsdoj.8007acfbbc114beaa8cb74b406cfa6c5
Document Type :
article
Full Text :
https://doi.org/10.3390/agronomy14071484