1. Meta-Analysis of Genome-Wide Association Studies Reveals Genetic Mechanisms of Supraventricular Arrhythmias.
- Author
-
Weng LC, Khurshid S, Hall AW, Nauffal V, Morrill VN, Sun YV, Rämö JT, Beer D, Lee S, Nadkarni G, Johnson R, Andreasen L, Clayton A, Pullinger CR, Yoneda ZT, Friedman DJ, Hyman MC, Judy RL, Skanes AC, Orland KM, Jordà P, Treu TM, Oetjens MT, Subbiah R, Hartmann JP, May HT, Kane JP, Issa TZ, Nafissi NA, Leong-Sit P, Dubé MP, Roselli C, Choi SH, Tardif JC, Khan HR, Knight S, Svendsen JH, Walker B, Karlsson Linnér R, Gaziano JM, Tadros R, Fatkin D, Rader DJ, Shah SH, Roden DM, Marcus GM, Loos RJF, Damrauer SM, Haggerty CM, Cho K, Palotie A, Olesen MS, Eckhardt LL, Roberts JD, Cutler MJ, Shoemaker MB, Wilson PWF, Ellinor PT, and Lubitz SA
- Subjects
- Humans, Genetic Predisposition to Disease, Tachycardia, Atrioventricular Nodal Reentry genetics, Polymorphism, Single Nucleotide, Connectin genetics, Transcriptome, Genome-Wide Association Study, Tachycardia, Supraventricular genetics
- Abstract
Background: Substantial data support a heritable basis for supraventricular tachycardias, but the genetic determinants and molecular mechanisms of these arrhythmias are poorly understood. We sought to identify genetic loci associated with atrioventricular nodal reentrant tachycardia (AVNRT) and atrioventricular accessory pathways or atrioventricular reciprocating tachycardia (AVAPs/AVRT)., Methods: We performed multiancestry meta-analyses of genome-wide association studies to identify genetic loci for AVNRT (4 studies) and AVAP/AVRT (7 studies). We assessed evidence supporting the potential causal effects of candidate genes by analyzing relations between associated variants and cardiac gene expression, performing transcriptome-wide analyses, and examining prior genome-wide association studies., Results: Analyses comprised 2384 AVNRT cases and 106 489 referents, and 2811 AVAP/AVRT cases and 1,483 093 referents. We identified 2 significant loci for AVNRT, which implicate NKX2-5 and TTN as disease susceptibility genes. A transcriptome-wide association analysis supported an association between reduced predicted cardiac expression of NKX2-5 and AVNRT. We identified 3 significant loci for AVAP/AVRT, which implicate SCN5A , SCN10A , and TTN/CCDC141 . Variant associations at several loci have been previously reported for cardiac phenotypes, including atrial fibrillation, stroke, Brugada syndrome, and electrocardiographic intervals., Conclusions: Our findings highlight gene regions associated with ion channel function (AVAP/AVRT), as well as cardiac development and the sarcomere (AVAP/AVRT and AVNRT) as important potential effectors of supraventricular tachycardia susceptibility., Competing Interests: Disclosures Dr Lubitz is a full-time employee of Novartis as of July 2022. Previously, Dr Lubitz received research support from Bristol Myers Squibb/Pfizer, Bayer AG, Boehringer Ingelheim, Fitbit, IBM, Medtronic, and Premier, Inc, and consulted for Bristol Myers Squibb/Pfizer, Bayer AG, Blackstone Life Sciences, and Invitae. Dr Ellinor receives research support from Bayer AG, IBM, and Bristol Myers Squibb/Pfizer and has consulted for Novartis, MyoKardia, and Bayer AG. Dr Damrauer receives research support for RenalytixAI and has consulted for Calico Labs. Dr Svendsen is a member of Medtronic advisory boards and has received speaker honoraria and research grants from Medtronic outside this work. Dr Cutler has consulted for Janssen Scientific. Dr Roselli is supported by a grant from Bayer AG to the Broad Institute focused on the development of therapeutics for cardiovascular disease. The other authors report no conflicts.
- Published
- 2024
- Full Text
- View/download PDF