Back to Search Start Over

Meta-Analysis of Genome-Wide Association Studies Reveals Genetic Mechanisms of Supraventricular Arrhythmias.

Authors :
Weng LC
Khurshid S
Hall AW
Nauffal V
Morrill VN
Sun YV
Rämö JT
Beer D
Lee S
Nadkarni G
Johnson R
Andreasen L
Clayton A
Pullinger CR
Yoneda ZT
Friedman DJ
Hyman MC
Judy RL
Skanes AC
Orland KM
Jordà P
Treu TM
Oetjens MT
Subbiah R
Hartmann JP
May HT
Kane JP
Issa TZ
Nafissi NA
Leong-Sit P
Dubé MP
Roselli C
Choi SH
Tardif JC
Khan HR
Knight S
Svendsen JH
Walker B
Karlsson Linnér R
Gaziano JM
Tadros R
Fatkin D
Rader DJ
Shah SH
Roden DM
Marcus GM
Loos RJF
Damrauer SM
Haggerty CM
Cho K
Palotie A
Olesen MS
Eckhardt LL
Roberts JD
Cutler MJ
Shoemaker MB
Wilson PWF
Ellinor PT
Lubitz SA
Source :
Circulation. Genomic and precision medicine [Circ Genom Precis Med] 2024 Jun; Vol. 17 (3), pp. e004320. Date of Electronic Publication: 2024 May 28.
Publication Year :
2024

Abstract

Background: Substantial data support a heritable basis for supraventricular tachycardias, but the genetic determinants and molecular mechanisms of these arrhythmias are poorly understood. We sought to identify genetic loci associated with atrioventricular nodal reentrant tachycardia (AVNRT) and atrioventricular accessory pathways or atrioventricular reciprocating tachycardia (AVAPs/AVRT).<br />Methods: We performed multiancestry meta-analyses of genome-wide association studies to identify genetic loci for AVNRT (4 studies) and AVAP/AVRT (7 studies). We assessed evidence supporting the potential causal effects of candidate genes by analyzing relations between associated variants and cardiac gene expression, performing transcriptome-wide analyses, and examining prior genome-wide association studies.<br />Results: Analyses comprised 2384 AVNRT cases and 106 489 referents, and 2811 AVAP/AVRT cases and 1,483 093 referents. We identified 2 significant loci for AVNRT, which implicate NKX2-5 and TTN as disease susceptibility genes. A transcriptome-wide association analysis supported an association between reduced predicted cardiac expression of NKX2-5 and AVNRT. We identified 3 significant loci for AVAP/AVRT, which implicate SCN5A , SCN10A , and TTN/CCDC141 . Variant associations at several loci have been previously reported for cardiac phenotypes, including atrial fibrillation, stroke, Brugada syndrome, and electrocardiographic intervals.<br />Conclusions: Our findings highlight gene regions associated with ion channel function (AVAP/AVRT), as well as cardiac development and the sarcomere (AVAP/AVRT and AVNRT) as important potential effectors of supraventricular tachycardia susceptibility.<br />Competing Interests: Disclosures Dr Lubitz is a full-time employee of Novartis as of July 2022. Previously, Dr Lubitz received research support from Bristol Myers Squibb/Pfizer, Bayer AG, Boehringer Ingelheim, Fitbit, IBM, Medtronic, and Premier, Inc, and consulted for Bristol Myers Squibb/Pfizer, Bayer AG, Blackstone Life Sciences, and Invitae. Dr Ellinor receives research support from Bayer AG, IBM, and Bristol Myers Squibb/Pfizer and has consulted for Novartis, MyoKardia, and Bayer AG. Dr Damrauer receives research support for RenalytixAI and has consulted for Calico Labs. Dr Svendsen is a member of Medtronic advisory boards and has received speaker honoraria and research grants from Medtronic outside this work. Dr Cutler has consulted for Janssen Scientific. Dr Roselli is supported by a grant from Bayer AG to the Broad Institute focused on the development of therapeutics for cardiovascular disease. The other authors report no conflicts.

Details

Language :
English
ISSN :
2574-8300
Volume :
17
Issue :
3
Database :
MEDLINE
Journal :
Circulation. Genomic and precision medicine
Publication Type :
Academic Journal
Accession number :
38804128
Full Text :
https://doi.org/10.1161/CIRCGEN.123.004320