1. Development of a broadband superluminescent diode based on self-assembled InAs quantum dots and demonstration of high-axial-resolution optical coherence tomography imaging
- Author
-
Kunio Miyaji, Yoshimasa Sugimoto, Sho Yamauchi, Eiichiro Watanabe, Kenji Furuki, Naoki Ikeda, David T. D. Childs, Yuma Hayashi, Yoichi Oikawa, Richard A. Hogg, Hirotaka Ohsato, and Nobuhiko Ozaki
- Subjects
Materials science ,Acoustics and Ultrasonics ,02 engineering and technology ,Electroluminescence ,01 natural sciences ,law.invention ,Optical coherence tomography ,law ,0103 physical sciences ,medicine ,010302 applied physics ,medicine.diagnostic_test ,business.industry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Superluminescent diode ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Wavelength ,Quantum dot ,Optoelectronics ,0210 nano-technology ,business ,Luminescence ,Waveguide ,Molecular beam epitaxy - Abstract
We developed a near-infrared (NIR) superluminescent diode (SLD) based on self-assembled InAs quantum dots (QDs) and demonstrated high-axial-resolution optical coherence tomography (OCT) imaging using this QD-based SLD (QD-SLD). The QD-SLD utilized InAs QDs with controlled emission wavelengths as a NIR broadband light emitter, and a tilted waveguide with segmented electrodes was prepared for edge-emitting broadband electroluminescence (EL) spanning approximately 1–1.3 μm. The bandwidth of the EL spectrum was increased up to 144 nm at a temperature of 25 °C controlled using a thermoelectric cooler. The inverse Fourier transform of the EL spectrum predicted a minimum resolution of 3.6 μm in air. The QD-SLD was subsequently introduced into a spectral-domain (SD)-OCT setup, and SD-OCT imaging was performed for industrial and biological test samples. The OCT images obtained using the QD-SLD showed an axial resolution of ~4 μm, which was almost the same as that predicted from the spectrum. This axial resolution is less than the typical size of a single biological cell (~5 μm), and the practical demonstration of high-axial-resolution OCT imaging shows the application of QD-SLDs as a compact OCT light source, which enables the development of a portable OCT system.
- Published
- 2019