1. Scalable quantum computing with ion-implanted dopant atoms in silicon
- Author
-
Andrew S. Dzurak, Vincent Mourik, Fahd A. Mohiyaddin, Tim Botzem, Jarryd J. Pla, Vivien Schmitt, Brett C. Johnson, Kohei M. Itoh, Alexander M. Jakob, Andrea Morello, Fay E. Hudson, Mateusz Madzik, R. Savytskyy, Stefanie Tenberg, Jeffrey C. McCallum, Arne Laucht, Guilherme Tosi, and David N. Jamieson
- Subjects
Materials science ,Dopant ,Silicon ,business.industry ,chemistry.chemical_element ,Hardware_PERFORMANCEANDRELIABILITY ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Quantum logic ,CMOS ,chemistry ,Qubit ,0103 physical sciences ,Hardware_INTEGRATEDCIRCUITS ,Optoelectronics ,Hardware_ARITHMETICANDLOGICSTRUCTURES ,Quantum information ,010306 general physics ,0210 nano-technology ,business ,Quantum ,Quantum computer - Abstract
We present a scalable strategy to manufacture quantum computer devices, by encoding quantum information in the combined electron-nuclear spin state of individual ion-implanted phosphorus dopant atoms in silicon. Our strategy allows a typical pitch between quantum bits of order 200 nm, and retains compatibility with the standard fabrication processes adopted in classical CMOS nanoelectronic devices. We theoretically predict fast and high-fidelity quantum logic operations, and present preliminary experimental progress towards the realization of a “flip-flop” qubit system.
- Published
- 2018