1. Nonlinear reduced basis using mixture Wasserstein barycenters: application to an eigenvalue problem inspired from quantum chemistry
- Author
-
Dalery, Maxime, Dusson, Geneviève, Ehrlacher, Virginie, Lozinski, Alexei, Laboratoire de Mathématiques de Besançon (UMR 6623) (LMB), Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique (CERMICS), École des Ponts ParisTech (ENPC), MATHematics for MatERIALS (MATHERIALS), École des Ponts ParisTech (ENPC)-École des Ponts ParisTech (ENPC)-Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), ANR-15-IDEX-0003,BFC,ISITE ' BFC(2015), ANR-19-CE46-0002,COMODO,Systèmes de diffusion croisée sur des domaines en mouvement(2019), and European Project: 810367,EMC2(2019)
- Subjects
Wasserstein barycenter ,Eigenvalue problem ,Optimal Transport ,Reduced Basis ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] - Abstract
The aim of this article is to propose a new reduced-order modelling approach for parametric eigenvalue problems arising in electronic structure calculations. Namely, we develop nonlinear reduced basis techniques for the approximation of parametric eigenvalue problems inspired from quantum chemistry applications. More precisely, we consider here a onedimensional model which is a toy model for the computation of the electronic ground state wavefunction of a system of electrons within a molecule, solution to the many-body electronic Schrödinger equation, where the varying parameters are the positions of the nuclei in the molecule. We estimate the decay rate of the Kolmogorov n-width of the set of solutions for this parametric problem in several settings, including the standard L2-norm as well as with distances based on optimal transport. The fact that the latter decays much faster than in the traditional L2-norm setting motivates us to propose a practical nonlinear reduced basis method, which is based on an offline greedy algorithm, and an efficient stochastic energy minimization in the online phase. We finally provide numerical results illustrating the capabilities of the method and good approximation properties, both in the offline and the online phase.
- Published
- 2023