Back to Search Start Over

Automatised selection of load paths to construct reduced-order models in computational damage micromechanics: from dissipation-driven random selection to Bayesian optimization

Authors :
Stéphane Pierre Bordas
Pierre Kerfriden
David Amsallem
Wing Kam Liu
Olivier Goury
Deformable Robots Simulation Team (DEFROST )
Inria Lille - Nord Europe
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL)
Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
Stanford University
University of Luxembourg [Luxembourg]
Northwestern University [Evanston]
School of Engineering [Cardiff]
Cardiff University
EPSRC funding under grant EP/J01947X/1ERC Stg grant agreement No. 279578AFOSR grant No. FA9550-14-1-0032
Source :
Computational Mechanics, Computational Mechanics, Springer Verlag, 2016, 58 (2), pp.213-234. ⟨10.1007/s00466-016-1290-2⟩, Computational Mechanics, 2016, 58 (2), pp.213-234. ⟨10.1007/s00466-016-1290-2⟩, Computational Mechanics. New York, NY: Springer Science & Business Media B.V (2016).
Publication Year :
2016
Publisher :
HAL CCSD, 2016.

Abstract

International audience; In this paper, we present new reliable model order reduction strategies for computational micromechanics. The difficulties rely mainly upon the high dimensionality of the parameter space represented by any load path applied onto the representative volume element (RVE). We take special care of the challenge of selecting an exhaustive snapshot set. This is treated by first using a random sampling of energy dissipating load paths and then in a more advanced way using Bayesian optimization associated with an interlocked division of the parameter space. Results show that we can insure the selection of an exhaustive snapshot set from which a reliable reduced-order model (ROM) can be built.

Details

Language :
English
ISSN :
01787675 and 14320924
Database :
OpenAIRE
Journal :
Computational Mechanics, Computational Mechanics, Springer Verlag, 2016, 58 (2), pp.213-234. ⟨10.1007/s00466-016-1290-2⟩, Computational Mechanics, 2016, 58 (2), pp.213-234. ⟨10.1007/s00466-016-1290-2⟩, Computational Mechanics. New York, NY: Springer Science & Business Media B.V (2016).
Accession number :
edsair.doi.dedup.....07f5d1f64c4548ea34a18f417085cc5d
Full Text :
https://doi.org/10.1007/s00466-016-1290-2⟩