1. Topological aspects of antiferromagnets
- Author
-
Ousmane Ly, Fengjun Zhuo, Aurelien Manchon, Adel About, V. Bonbien, Akshaykumar Salimath, King Abdullah University of Science and Technology (KAUST), University of Agder (UIA), King Fahd University of Petroleum and Minerals (KFUPM), Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)
- Subjects
Acoustics and Ultrasonics ,Field (physics) ,FOS: Physical sciences ,02 engineering and technology ,Topology ,01 natural sciences ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,0103 physical sciences ,Antiferromagnetism ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,010306 general physics ,Quantum ,Topology (chemistry) ,Spin-½ ,Physics ,Condensed Matter - Materials Science ,Condensed Matter - Mesoscale and Nanoscale Physics ,Spintronics ,Skyrmion ,Materials Science (cond-mat.mtrl-sci) ,Charge (physics) ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph] ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Condensed Matter::Strongly Correlated Electrons ,0210 nano-technology - Abstract
The long fascination antiferromagnetic materials have exerted on the scientific community over about a century has been entirely renewed recently with the discovery of several unexpected phenomena including various classes of anomalous spin and charge Hall effects and unconventional magnonic transport, but also homochiral magnetic entities such as skyrmions. With these breakthroughs, antiferromagnets standout as a rich playground for the investigation of novel topological behaviors, and as promising candidate materials for disruptive low-power microelectronic applications. Remarkably, the newly discovered phenomena are all related to the topology of the magnetic, electronic or magnonic ground state of the antiferromagnets. This review exposes how non-trivial topology emerges at different levels in antiferromagnets and explores the novel mechanisms that have been discovered recently. We also discuss how novel classes of quantum magnets could enrich the currently expanding field of antiferromagnetic spintronics and how spin transport can in turn favor a better understanding of exotic quantum excitations., Comment: 77 pages, 47 figures
- Published
- 2022