1. Multiscale modelling of diffusion and enzymatic reaction in porous electrodes in Direct Electron Transfer mode
- Author
-
Cristina Carucci, Didier Lasseux, Sébastien Gounel, Alexander Kuhn, Tatjana Šafarik, Lin Zhang, Sabrina Bichon, Tien Dung Le, Francesca Lorenzutti, Nicolas Mano, Institut de Mécanique et d'Ingénierie (I2M), Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM), Laboratoire Énergies et Mécanique Théorique et Appliquée (LEMTA ), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences Moléculaires (ISM), Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherche Paul Pascal (CRPP), Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), ANR-10-LABX-0042,AMADEus,Advanced Materials by Design(2010), ANR-10-IDEX-0003,IDEX BORDEAUX,Initiative d'excellence de l'Université de Bordeaux(2010), ANR-17-CE08-0005,MOMA,Modélisation d'électrodes poreuses pour leur conception optimisée(2017), ANR-16-CE19-0001,BIO3,Electrodes poreuses biocompatibles et biofonctionnelles pour des biopiles enzymatiques miniaturisées(2016), European Project: 8813006(1988), HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM), and Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1 (UB)-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Work (thermodynamics) ,Materials science ,General Chemical Engineering ,Volume averaging method ,Thermodynamics ,02 engineering and technology ,engineering.material ,010402 general chemistry ,01 natural sciences ,Industrial and Manufacturing Engineering ,Electron transfer ,[CHIM.GENI]Chemical Sciences/Chemical engineering ,Coating ,Diffusion reaction ,Direct Electron Transfer ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,Diffusion (business) ,Porosity ,Bilirubin oxidase ,Voltammetry ,Bilirubin Oxidase ,Applied Mathematics ,[SPI.FLUID]Engineering Sciences [physics]/Reactive fluid environment ,Porous electrode ,General Chemistry ,[CHIM.CATA]Chemical Sciences/Catalysis ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Electrode ,engineering ,0210 nano-technology - Abstract
This work is dedicated to a multi-scale modelling of coupled diffusion and reaction in a porous microelectrode operating in the Direct Electron Transfer mode. The pore-scale physico-electrochemical unsteady model is developed considering the oxygen reduction, catalyzed by an enzyme coating the pores of the electrode, coupled to the diffusion of oxygen and mass balance of enzymes. This model is formally upscaled to obtain an original closed unsteady macroscopic model operating at the electrode scale, together with the associated closure providing the effective diffusivity tensor. A validation of this model is carried out from a comparison with the solution of the initial 3D pore-scale governing equations considering the bilirubin oxydase as the catalyst. The relevance and accuracy of the macroscale model are proved allowing a considerable simulation speedup. It is further employed to successfully predict experimental voltammetry results obtained with porous gold electrodes functionnalized with a bilirubin oxidase mutant (BOD S362C). This model represents a breakthrough by providing an operational simple way of understanding and further optimizing porous electrodes functioning in DET mode.
- Published
- 2022
- Full Text
- View/download PDF