Back to Search Start Over

Multiscale modelling of diffusion and enzymatic reaction in porous electrodes in Direct Electron Transfer mode

Authors :
Cristina Carucci
Didier Lasseux
Sébastien Gounel
Alexander Kuhn
Tatjana Šafarik
Lin Zhang
Sabrina Bichon
Tien Dung Le
Francesca Lorenzutti
Nicolas Mano
Institut de Mécanique et d'Ingénierie (I2M)
Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Arts et Métiers Sciences et Technologies
HESAM Université (HESAM)-HESAM Université (HESAM)
Laboratoire Énergies et Mécanique Théorique et Appliquée (LEMTA )
Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
Institut des Sciences Moléculaires (ISM)
Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
Centre de Recherche Paul Pascal (CRPP)
Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
ANR-10-LABX-0042,AMADEus,Advanced Materials by Design(2010)
ANR-10-IDEX-0003,IDEX BORDEAUX,Initiative d'excellence de l'Université de Bordeaux(2010)
ANR-17-CE08-0005,MOMA,Modélisation d'électrodes poreuses pour leur conception optimisée(2017)
ANR-16-CE19-0001,BIO3,Electrodes poreuses biocompatibles et biofonctionnelles pour des biopiles enzymatiques miniaturisées(2016)
European Project: 8813006(1988)
HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)
Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1 (UB)-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
Source :
Chemical Engineering Science, Chemical Engineering Science, Elsevier, 2022, 248, pp.117157. ⟨10.1016/j.ces.2021.117157⟩, Chemical Engineering Science, Elsevier, 2022, 248 (Part B), pp.117157. ⟨10.1016/j.ces.2021.117157⟩, Chemical Engineering Science, 2022, 248, pp.117157. ⟨10.1016/j.ces.2021.117157⟩
Publication Year :
2022
Publisher :
HAL CCSD, 2022.

Abstract

This work is dedicated to a multi-scale modelling of coupled diffusion and reaction in a porous microelectrode operating in the Direct Electron Transfer mode. The pore-scale physico-electrochemical unsteady model is developed considering the oxygen reduction, catalyzed by an enzyme coating the pores of the electrode, coupled to the diffusion of oxygen and mass balance of enzymes. This model is formally upscaled to obtain an original closed unsteady macroscopic model operating at the electrode scale, together with the associated closure providing the effective diffusivity tensor. A validation of this model is carried out from a comparison with the solution of the initial 3D pore-scale governing equations considering the bilirubin oxydase as the catalyst. The relevance and accuracy of the macroscale model are proved allowing a considerable simulation speedup. It is further employed to successfully predict experimental voltammetry results obtained with porous gold electrodes functionnalized with a bilirubin oxidase mutant (BOD S362C). This model represents a breakthrough by providing an operational simple way of understanding and further optimizing porous electrodes functioning in DET mode.

Details

Language :
English
ISSN :
00092509
Database :
OpenAIRE
Journal :
Chemical Engineering Science, Chemical Engineering Science, Elsevier, 2022, 248, pp.117157. ⟨10.1016/j.ces.2021.117157⟩, Chemical Engineering Science, Elsevier, 2022, 248 (Part B), pp.117157. ⟨10.1016/j.ces.2021.117157⟩, Chemical Engineering Science, 2022, 248, pp.117157. ⟨10.1016/j.ces.2021.117157⟩
Accession number :
edsair.doi.dedup.....e67afe01f44ae0674bfd391a0d2858ca
Full Text :
https://doi.org/10.1016/j.ces.2021.117157⟩