1. One model fits all: Combining inference and simulation of gene regulatory networks
- Author
-
Elias Ventre, Ulysse Herbach, Thibault Espinasse, Gérard Benoit, Olivier Gandrillon, Laboratoire de biologie et modélisation de la cellule (LBMC UMR 5239), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Institut Camille Jordan (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Modélisation multi-échelle des dynamiques cellulaires : application à l'hématopoïese (DRACULA), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)-Inria Lyon, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Biology, genetics and statistics (BIGS), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Probabilités, statistique, physique mathématique (PSPM), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), ANR-18-CE45-0023,SingleStatOmics,Statistique et Apprentissage pour la génomique en cellules uniques(2018), and École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL)
- Subjects
Ecology ,Transcriptional bursting ,Lineage commitment ,[SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM] ,Gene regulatory networks ,Cellular and Molecular Neuroscience ,Stochastic gene expression ,Computational Theory and Mathematics ,Data simulation ,Modeling and Simulation ,[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Genomics [q-bio.GN] ,Genetics ,[MATH]Mathematics [math] ,Molecular Biology ,Ecology, Evolution, Behavior and Systematics ,Single-cell transcriptomics ,Time-course profiles ,Causal inference - Abstract
The rise of single-cell data highlights the need for a nondeterministic view of gene expression, while offering new opportunities regarding gene regulatory network inference. We recently introduced two strategies that specifically exploit time-course data, where single-cell profiling is performed after a stimulus: HARISSA, a mechanistic network model with a highly efficient simulation procedure, and CARDAMOM, a scalable inference method seen as model calibration. Here, we combine the two approaches and show that the same model driven by transcriptional bursting can be used simultaneously as an inference tool, to reconstruct biologically relevant networks, and as a simulation tool, to generate realistic transcriptional profiles emerging from gene interactions. We verify that CARDAMOM quantitatively reconstructs causal links when the data is simulated from HARISSA, and demonstrate its performance on experimental data collected onin vitrodifferentiating mouse embryonic stem cells. Overall, this integrated strategy largely overcomes the limitations of disconnected inference and simulation.Author summaryGene regulatory network (GRN) inference is an old problem, to which single-cell data has recently offered new challenges and breakthrough potential. Many GRN inference methods based on single-cell transcriptomic data have been developed over the last few years, while GRN simulation tools have also been proposed for generating synthetic datasets with realistic features. However, except for benchmarking purposes, these two fields remain largely disconnected. In this work, building on a combination of two methods we recently described, we show that a particular GRN model can be used simultaneously as an inference tool, to reconstruct a biologically relevant network from time-course single-cell gene expression data, and as a simulation tool, to generate realistic transcriptional profiles in a non-trivial way through gene interactions. This integrated strategy demonstrates the benefits of using the same executable model for both simulation and inference.
- Published
- 2023