1. Electrically driven electron spin resonance mediated by spin–valley–orbit coupling in a silicon quantum dot
- Author
-
L. Bourdet, Louis Hutin, Xavier Jehl, Andrea Corna, Romain Maurand, Yann-Michel Niquet, Romain Lavieville, Dharmraj Kotekar-Patil, Silvano De Franceschi, A. Crippa, Sylvain Barraud, Maud Vinet, H. Bohuslavskyi, Marc Sanquer, Laboratoire de Transport Electronique Quantique et Supraconductivité (LaTEQS), PHotonique, ELectronique et Ingénierie QuantiqueS (PHELIQS), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratory of Atomistic Simulation (LSIM ), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), and European Project: 688539,MOSQUITO
- Subjects
Silicon ,Computer Networks and Communications ,Physics::Instrumentation and Detectors ,Nanowire ,chemistry.chemical_element ,Silicon on insulator ,FOS: Physical sciences ,02 engineering and technology ,Hardware_PERFORMANCEANDRELIABILITY ,7. Clean energy ,01 natural sciences ,lcsh:QA75.5-76.95 ,symbols.namesake ,Hardware_GENERAL ,0103 physical sciences ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,Computer Science (miscellaneous) ,Hardware_INTEGRATEDCIRCUITS ,Hardware_ARITHMETICANDLOGICSTRUCTURES ,FIELD ,010306 general physics ,[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall] ,Spin-½ ,NANOWIRE ,Physics ,Zeeman effect ,Condensed matter physics ,Spintronics ,Condensed Matter - Mesoscale and Nanoscale Physics ,Statistical and Nonlinear Physics ,QUBIT ,021001 nanoscience & nanotechnology ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,lcsh:QC1-999 ,Computational Theory and Mathematics ,chemistry ,Quantum dot ,Qubit ,symbols ,Condensed Matter::Strongly Correlated Electrons ,lcsh:Electronic computers. Computer science ,0210 nano-technology ,lcsh:Physics - Abstract
The ability to manipulate electron spins with voltage-dependent electric fields is key to the operation of quantum spintronics devices, such as spin-based semiconductor qubits. A natural approach to electrical spin control exploits the spin–orbit coupling (SOC) inherently present in all materials. So far, this approach could not be applied to electrons in silicon, due to their extremely weak SOC. Here we report an experimental realization of electrically driven electron–spin resonance in a silicon-on-insulator (SOI) nanowire quantum dot device. The underlying driving mechanism results from an interplay between SOC and the multi-valley structure of the silicon conduction band, which is enhanced in the investigated nanowire geometry. We present a simple model capturing the essential physics and use tight-binding simulations for a more quantitative analysis. We discuss the relevance of our findings to the development of compact and scalable electron–spin qubits in silicon. Weak spin–orbit effects in silicon can be exploited to electrically drive electron-spin resonance in a silicon nanowire quantum dot device with low-symmetry confinement potential. Andrea Corna and colleagues at Grenoble’s CEA and University Grenoble Alpes achieved this by fabricating a silicon nanowire device over a silicon-on-insulator wafer, on which the gate accumulation voltages can define two corner quantum dots. Quantum confinement allows the coupling of spin and valley degrees of freedom via spin–orbit coupling, despite its inherent weakness in silicon, when the energy splitting between the valley energy eigenstates matches the magnetic field-induced Zeeman spin splitting. The observation of electric-dipole spin-valley resonance demonstrates the potential of spin–orbit coupling for realizing electric-field-mediated spin control, which will be crucial for large-scale integration of silicon-based spin qubits.
- Published
- 2018
- Full Text
- View/download PDF