Back to Search Start Over

A CMOS silicon spin qubit

Authors :
S. De Franceschi
Louis Hutin
H. Bohuslavskyi
Xavier Jehl
R. Lavieville
Romain Maurand
Sylvain Barraud
Maud Vinet
Andrea Corna
Dharmraj Kotekar-Patil
Marc Sanquer
Laboratoire de Transport Electronique Quantique et Supraconductivité (LaTEQS)
PHotonique, ELectronique et Ingénierie QuantiqueS (PHELIQS)
Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI)
Direction de Recherche Technologique (CEA) (DRT (CEA))
European Project: 1323160(2013)
Source :
Nature Communications, Nature Communications, Nature Publishing Group, 2016, 7 (1), pp.6. ⟨10.1038/ncomms1357⟩, Nature Communications, Vol 7, Iss 1, Pp 1-6 (2016), Nature Communications, 2016, 7 (1), pp.6. ⟨10.1038/ncomms1357⟩
Publication Year :
2016
Publisher :
HAL CCSD, 2016.

Abstract

Silicon, the main constituent of microprocessor chips, is emerging as a promising material for the realization of future quantum processors. Leveraging its well-established complementary metal–oxide–semiconductor (CMOS) technology would be a clear asset to the development of scalable quantum computing architectures and to their co-integration with classical control hardware. Here we report a silicon quantum bit (qubit) device made with an industry-standard fabrication process. The device consists of a two-gate, p-type transistor with an undoped channel. At low temperature, the first gate defines a quantum dot encoding a hole spin qubit, the second one a quantum dot used for the qubit read-out. All electrical, two-axis control of the spin qubit is achieved by applying a phase-tunable microwave modulation to the first gate. The demonstrated qubit functionality in a basic transistor-like device constitutes a promising step towards the elaboration of scalable spin qubit geometries in a readily exploitable CMOS platform.<br />Silicon is a promising material for realization of quantum processors, particularly as it could be naturally integrated with classical control hardware based on CMOS technology. Here the authors report a silicon qubit device made with an industry-standard fabrication process on a CMOS platform.

Details

Language :
English
ISSN :
20411723
Database :
OpenAIRE
Journal :
Nature Communications, Nature Communications, Nature Publishing Group, 2016, 7 (1), pp.6. ⟨10.1038/ncomms1357⟩, Nature Communications, Vol 7, Iss 1, Pp 1-6 (2016), Nature Communications, 2016, 7 (1), pp.6. ⟨10.1038/ncomms1357⟩
Accession number :
edsair.doi.dedup.....392f88115e05ef82f11129b220dce26a
Full Text :
https://doi.org/10.1038/ncomms1357⟩