1. Learning to Predict Action Feasibility for Task and Motion Planning in 3D Environments
- Author
-
Ait Bouhsain, Smail, Alami, Rachid, Simeon, Thierry, Équipe Robotique et InteractionS (LAAS-RIS), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse Capitole (UT Capitole), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse Capitole (UT Capitole), Université Fédérale Toulouse Midi-Pyrénées, Simeon, Thierry, Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), and Université de Toulouse (UT)
- Subjects
[INFO.INFO-RB] Computer Science [cs]/Robotics [cs.RO] ,[INFO.INFO-RB]Computer Science [cs]/Robotics [cs.RO] - Abstract
International audience; In Task and motion planning (TAMP), symbolicsearch is combined with continuous geometric planning. A taskplanner finds an action sequence while a motion planner checksits feasibility and plans the corresponding sequence of motions.However, due to the high combinatorial complexity of discretesearch, the number of calls to the geometric planner can bevery large. Previous works [1] [2] leverage learning methods toefficiently predict the feasibility of actions, much like humansdo, on tabletop scenarios. This way, the time spent on motionplanning can be greatly reduced. In this work, we generalizethese methods to 3D environments, thus covering the wholeworkspace of the robot. We propose an efficient method for 3Dscene representation, along with a deep neural network capable ofpredicting the probability of feasibility of an action. We developa simple TAMP algorithm that integrates the trained classifier,and demonstrate the performance gain of using our approach onmultiple problem domains. On complex problems, our methodcan reduce the time spent on geometric planning by up to 90%.Index Terms—Task and motion planning, 3D scene represen-tation, Action feasibility prediction, Deep learning
- Published
- 2023