1. Towards the development of a targeted albumin-binding radioligand: Synthesis, radiolabelling and preliminary in vivo studies
- Author
-
Roger Hunter, Jan Rijn Zeevaart, Cathryn H.S. Driver, Thomas Ebenhan, Zoltan Szucs, and Mohammed Iqbal Parker
- Subjects
Cancer Research ,Biodistribution ,Stereochemistry ,Chemistry Techniques, Synthetic ,Ligands ,Mice ,chemistry.chemical_compound ,In vivo ,Albumins ,Cyclam ,Radioligand ,Animals ,Humans ,Moiety ,Tissue Distribution ,Radiology, Nuclear Medicine and imaging ,Maleimide ,Chelating Agents ,Radiochemistry ,Copper Radioisotopes ,chemistry ,Isotope Labeling ,Positron-Emission Tomography ,Molecular Medicine ,Linker ,Ex vivo - Abstract
Introduction The compound named 4-[10-(4-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)butanamido)decyl]-11-[10-(β, d -glucopyranos-1-yl)-1-oxodecyl]-1,4,8,11-tetraazacyclotetradecane-1,8-diacetic acid is a newly synthesised molecule capable of binding in vivo to albumin to form a bioconjugate. This compound was given the name, GluCAB(glucose-chelator-albumin-binder)-maleimide-1. Radiolabelled GluCAB-maleimide-1 and subsequent bioconjugate is proposed for prospective oncological applications and works on the theoretical dual-targeting principle of tumour localization through the “enhanced permeability and retention (EPR) effect” and glucose metabolism. Methods The precursor, GluCAB-amine-2, and subsequent GluCAB-maleimide-1 was synthesised via sequential regioselective, distal N-functionalisation of a cyclam template with a tether containing a synthetically-derived β-glucoside followed by a second linker to incorporate a maleimide moiety for albumin-binding. GluCAB-amine-2 was radiolabelled with [64Cu]CuCl2 in 0.1 M NH4OAc (pH 3.5, 90 °C, 30 min), purified and converted post-labeling in 0.01 M PBS to [64Cu]Cu-GluCAB-maleimide-1. Serum stability and protein binding studies were completed according to described methods. Healthy BALB/c ice (three groups of n = 5) were injected intravenously with [64Cu]Cu-TETA, [64Cu]Cu-GluCAB-amine-2 or [64Cu]Cu-GluCAB-maleimide-1 and imaged using microPET/CT at 1, 2, 4, 8 and 24 h post-injection. Biodistribution of the compounds were determined ex vivo after 24 h using gamma counting. Results GluCAB-maleimide-1 was synthesised in five consecutive steps with an overall yield of 11%. [64Cu]Cu-GluCAB-amine-2 (97% labelling efficiency) was converted to [64Cu]Cu-GluCAB-maleimide-1 (93% conversion; 90% radiochemical purity). Biodistribution analysis indicated that the control compounds were rapidly and almost completely excreted as compared to [64Cu]Cu-GluCAB-maleimide-1 that exhibited a prolonged biological half-life (6–8 h). Both, [64Cu]Cu-GluCAB-maleimide-1 and -amine-2 were excreted through the hepatobiliary system but a higher hepatic presence of the albumin-bound compound was noted. Conclusions, advances in knowledge and implications for patient care This initial evaluation paves the way for further investigation into the tumour targeting potential of [64Cu]Cu-GluCAB-maleimide-1. An efficient targeted radioligand will allow for further development of a prospective theranostic agent for more personalized patient treatment which potentially improves overall patient prognosis, outcome and health care.
- Published
- 2021
- Full Text
- View/download PDF