1. Effect of variation of hydrogen injection pressure and inlet air temperature on the flow-field of a typical double cavity scramjet combustor
- Author
-
Pushpdeep Ramnani, Fayez Shakil Ahmed, Krishna Murari Pandey, Gautam Choubey, and Dilbahar Hussain Laskar
- Subjects
Materials science ,Renewable Energy, Sustainability and the Environment ,Turbulence ,05 social sciences ,Energy Engineering and Power Technology ,02 engineering and technology ,Mechanics ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Vortex ,Physics::Fluid Dynamics ,symbols.namesake ,Fuel Technology ,Mach number ,0502 economics and business ,Combustor ,symbols ,Shadowgraph ,Oblique shock ,Scramjet ,050207 economics ,0210 nano-technology ,Reynolds-averaged Navier–Stokes equations - Abstract
In the present research work, computational simulation of the double cavity scramjet combustor have been performed by using the two-dimensional compressible Reynolds-Averaged Navier–Stokes (RANS) equations coupled with two equation standard k–ɛ turbulence model as well as the finite-rate/eddy-dissipation reaction model. All the simulations are carried out using ANSYS 14-FLUENT code. Additionally, the computational results of the present double cavity scramjet combustor have been compared with experimental results for validation purpose which is taken from the literature. The computational outcomes are in satisfactory agreement with the experimentally obtained shadowgraph image and pressure variation curve. However, due to numerical calculation, the pressure variation curve obtained computationally is under-predicted in 5 locations. Further, analyses have been carried out to investigate the effect of variation of hydrogen injection pressure as well as the variation of air inlet temperature on the flow-field characteristics of scramjet engine keeping the Mach number constant. The obtained results show that the increase in hydrogen injection pressure is followed by the generation of larger vortex structure near the cavity regions which in turn helps to carry the injectant and also enhance the air/fuel mixing whereas the increase in the inlet temperature of air is characterised by the shifting of incident oblique shock in the downstream of the H2 injection location. Again for T0 = 1500 K, the combustion phenomena remains limited to the cavity region and spreads very little towards the downstream of the combustor.
- Published
- 2017