1. Influence of native thin filament type on the regulation of atrial and ventricular myosin motor activity.
- Author
-
Spahiu, Emrulla, Uta, Petra, Kraft, Theresia, Nayak, Arnab, and Amrute-Nayak, Mamta
- Subjects
- *
STRIATED muscle , *MUSCLE contraction , *MYOMECTOMY , *FIBERS , *CARDIOMYOPATHIES - Abstract
Ca2+-mediated activation of thin filaments is a crucial step in initiating striated muscle contraction. To gain mechanistic insight into this regulatory process, thin filament (TF) components and myosin motors from diverse species and tissue sources are often combined in minimal in vitro systems. The contribution of tissue-specific TF composition with native myosin motors in generating contraction speed remains unclear. To examine TF-mediated regulation, we established a procedure to purify native TFs (nTF) and myosin motors (M-II) from the same cardiac tissue samples as low as 10 mg and investigated their influence on gliding speeds and Ca2+ sensitivity. The rabbit atrial and ventricular nTFs and M-II were assessed in in vitro nTF motility experiments under varying Ca2+ concentrations. The speed-pCa relationship yielded a maximum TF speed of 2.58 mm/s for atrial (aM-II) and 1.51 mm/s for ventricular myosin (vM-II), both higher than the respective unregulated actin filament gliding speeds. The Ca2+ sensitivity was different for both protein sources. After swapping the nTFs, the ventricular TFs increased their gliding speed on atrial myosin, while the atrial nTFs reduced their gliding speed on ventricular myosin. Swapping of the nTFs decreased the calcium sensitivity for both vM-II and aM-II, indicating a strong influence of the thin filament source. These studies suggest that the nTF-myosin combination is critical to understanding the Ca2+ sensitivity of the shortening speed. Our approach is highly relevant to studying precious human cardiac samples, that is, small myectomy samples, to address the alteration of contraction speed and Ca2+ sensitivity in cardiomyopathies. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF