1. Self-Assembly of a Repeatable DNA Nanohinge System Supporting Higher Order Structure Formation
- Author
-
Melanie Law, Charlie Sushams, David Mackay, Stephanie Nguyen, Rachael Nicholas, Miguel Roberto G. Tsai, Ethan Rajkumar, Fumiya Inaba, Kieran Maheden, Immanuel Abdi, Joe C.H. Ho, Brandon Kieft, and Steven J. Hallam
- Abstract
DNA base pairs can both encode biological information and be used as a programmable material to build nanostructures with potential application in nanofabrication, data processing and storage, biosensing and drug delivery. Over several decades development of these DNA origami nanostructures has led to increasingly advanced self-assembling nanostructures and molecular machines actuated by various mechanisms such as toehold-mediated strand displacement (TMSD), magnetism and even light. However, scalability remains challenging as using larger scaffold strands can increase the likelihood of kinetic traps and misfolded conformations. Here we describe a repeatable DNA nanohinge system to increase the scalability of existing nanohinge designs for hierarchical assembly of more complex structures with greater degrees of mobility and functionality. The components of this system, comprising two distinct nanohinges, were designed in caDNAno. Structure conformation and stability were simulated using CanDo and MrDNA, and hinge assembly was validated by TEM. Electron micrographs revealed hinge-shaped nanostructures capable of self-assembly into more complex structures, as well as actuation using TMSD through a reversible locking mechanism incorporated into the design. Our work expands the existing utility of DNA nanohinges as building blocks for scalable DNA nanostructures and demonstrates the feasibility of polymerizing hinges in a novel manner for higher order assembly. The enhanced functionality of our dual hinge systems can be employed in future applications requiring greater control and mobility of DNA nanostructures.
- Published
- 2023
- Full Text
- View/download PDF