Back to Search Start Over

Mercury methylation by metabolically versatile and cosmopolitan marine bacteria

Authors :
Heyu Lin
Carl H. Lamborg
Caitlin M. Gionfriddo
Steven J. Hallam
Kathryn E. Holt
Yoochan Myung
John W. Moreau
David B. Ascher
Publication Year :
2020
Publisher :
Cold Spring Harbor Laboratory, 2020.

Abstract

Microbes transform aqueous mercury (Hg) into methylmercury (MeHg), a potent neurotoxin in terrestrial and marine food webs. This process requires the gene pair hgcAB, which encodes for proteins that actuate Hg methylation, and has been well described for anoxic environments. However, recent studies report potential MeHg formation in suboxic seawater, although the microorganisms involved remain poorly understood. In this study, we conducted large-scale multi-omic analyses to search for putative microbial Hg methylators along defined redox gradients in Saanich Inlet (SI), British Columbia, a model natural ecosystem with previously measured Hg and MeHg concentration profiles. Analysis of gene expression profiles along the redoxcline identified several putative Hg methylating microbial groups, including Calditrichaeota, SAR324 and Marinimicrobia, with the last by far the most active based on hgc transcription levels. Marinimicrobia hgc genes were identified from multiple publicly available marine metagenomes, consistent with a potential key role in marine Hg methylation. Computational homology modelling predicted that Marinimicrobia HgcAB proteins contain the highly conserved structures required for functional Hg methylation. Furthermore, a number of terminal oxidases from aerobic respiratory chains were associated with several SI putative novel Hg methylators. Our findings thus reveal potential novel marine Hg-methylating microorganisms with a greater oxygen tolerance and broader habitat range than previously recognised.

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........24b23761ea198e88d33a999857e4f5fe
Full Text :
https://doi.org/10.1101/2020.06.03.132969