1. All-thin film nano-optoelectronic p-GeSn/i-GeSn/n-GeBi heterojunction for near-infrared photodetection and terahertz modulation.
- Author
-
Zhang, Dainan, Zheng, Youbin, Liao, Yulong, Liu, Cheng, and Zhang, Huaiwu
- Subjects
SEMICONDUCTOR films ,PHOTOELECTRIC devices ,THIN films ,OPTOELECTRONIC devices ,SUBMILLIMETER waves ,PHOTOELECTRICITY ,TERAHERTZ materials - Abstract
High-performance alloy thin films and large-sized thin film wafers for infrared applications are the focus of international researchers. In this study, doped Ge
1−x Snx and Ge1−y Biy semiconductor alloy films were grown on a 5-in. silicon (Si) wafer using high-quality Ge films as buffer layers. An efficient technique is presented to reduce the dark current density of near-infrared photoelectric devices. By using boron for p-type doping in Ge1−x Snx films and bismuth (Bi) for n-type doping in Ge1−y Biy films, an all-thin film planar nano-p-i-n optoelectronic device with the structure n-Ge1−y Biy /i-GeSn/p-Ge1−x Snx /Ge buffer/Si substrate has been successfully fabricated. The photoelectric performance of the device was tested, and it was found that the insertion of p-Ge1−x Snx /Ge films reduced the dark current density by 1–2 orders of magnitude. The maximum photoresponsivity reached up to 0.8 A/W, and the infrared photocurrent density ranged from 904 to 935 μA/cm2 under a +1 V bias voltage. Furthermore, the device is capable of modulating a terahertz wave using a voltage signal with a modulation bandwidth of 1.2 THz and a modulation depth of ∼83%, while the modulation rate is 0.5 MHz. This not only provides a clear demonstration of how doped alloy films and the development of nano-p-i-n heterojunctions will improve photoelectric devices' performance in the near-infrared and terahertz bands, but it also raises the possibility of optoelectronic interconnection applications being achieved through a single device. [ABSTRACT FROM AUTHOR]- Published
- 2024
- Full Text
- View/download PDF