1. Can We Estimate Air‐Sea Flux of Biological O 2 From Total Dissolved Oxygen?
- Author
-
Rachel Eveleth, David Nicholson, Nicolas Cassar, YIBIN HUANG, Laboratoire des Sciences de l'Environnement Marin (LEMAR) (LEMAR), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Institut Universitaire Européen de la Mer (IUEM), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), and ANR-10-LABX-0019,LabexMER,LabexMER Marine Excellence Research: a changing ocean(2010)
- Subjects
physical oxygen saturation anomaly ,Atmospheric Science ,Global and Planetary Change ,[SDU]Sciences of the Universe [physics] ,mechanistic and empirical models ,Air-sea gas biological oxygen flux ,Environmental Chemistry ,total dissolved oxygen ,General Environmental Science - Abstract
International audience; In this study, we compare mechanistic and empirical approaches to reconstruct the air-sea flux of biological oxygen (F[O2]bio-as) by parameterizing the physical oxygen saturation anomaly (ΔO2[phy]) in order to separate the biological contribution from total oxygen. The first approach matches ΔO2[phy] to the monthly climatology of the argon saturation anomaly from a global ocean circulation model's output. The second approach derives ΔO2[phy] from an iterative mass balance model forced by satellite-based physical drivers of ΔO2[phy] prior to the sampling day by assuming that air-sea interactions are the dominant factors driving the surface ΔO2[phy]. The final approach leverages the machine-learning technique of Genetic Programming (GP) to search for the functional relationship between ΔO2[phy] and biophysicochemical parameters. We compile simultaneous measurements of O2/Ar and O2 concentration from 14 cruises to train the GP algorithm and test the validity and applicability of our modeled ΔO2[phy] and F[O2]bio-as). Among the approaches, the GP approach, which incorporates ship-based measurements and historical records of physical parameters from the reanalysis products, provides the most robust predictions (R2 = 0.74 for ΔO2[phy] and 0.72 for F[O2]bio-as); RMSE = 1.4% for ΔO2[phy] and 7.1 mmol O2 m-2 d-1 for F[O2]bio-as). We use the empirical formulation derived from GP approach to reconstruct regional, inter-annual, and decadal variability of F[O2]bio-as) based on historical oxygen records. Overall, our study represents a first attempt at deriving F[O2]bio-as) from snapshot measurements of oxygen, thereby paving the way toward using historical O2 data and a rapidly growing number of O2 measurements on autonomous platforms for independent insight into the biological pump.
- Published
- 2022
- Full Text
- View/download PDF