Back to Search Start Over

Global Estimates of Marine Gross Primary Production Based on Machine Learning Upscaling of Field Observations

Authors :
Bangqin Huang
Yibin Huang
Nicolas Cassar
David P. Nicholson
Division of Earth and Ocean Sciences, Nicholas School of the Environment and Earth Sciences, Center for Nonlinear and Complex Systems
Duke University [Durham]
State Key Laboratory of Marine Environmental Science (MEL)
Xiamen University
Department of Marine Chemistry and Geochemistry (WHOI)
Woods Hole Oceanographic Institution (WHOI)
Division of Earth and Ocean Sciences [Durham]
Laboratoire des Sciences de l'Environnement Marin (LEMAR) (LEMAR)
Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Institut Universitaire Européen de la Mer (IUEM)
Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
N. Cassar was supported by the 'Laboratoire d'Excellence' LabexMER (ANR-10-LABX-19) and co-funded by a grant from the French government under the program 'Investissements d'Avenir.' Y. Huang and B. Huang were supported by grants from the National Key and Development Program of China (No.2016YFA0601201) and China NSF (No.41890803, U1805241). Y. Huang was also partly supported by Chinese State Scholarship Fund to study at Duke University as a joint Ph. D student (No. 201806310052). D. Nicholson was supported by NASA OBB NNX16AR48 G and NASA 80NSSC17K0663 and an Early Career Award from the Woods Hole Oceanographic Institution.
ANR-17-EURE-0015,ISBlue,Interdisciplinary Graduate School for the Blue planet(2017)
ANR-10-LABX-0019,LabexMER,LabexMER Marine Excellence Research: a changing ocean(2010)
Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
Source :
Global Biogeochemical Cycles, Global Biogeochemical Cycles, 2021, 35 (3), ⟨10.1029/2020GB006718⟩, Global Biogeochemical Cycles, American Geophysical Union, 2021, 35 (3), ⟨10.1029/2020GB006718⟩, Global Biogeochemical Cycles (0886-6236) (American Geophysical Union), 2021-03, Vol. 35, N. 3, P. e2020GB006718 (18p.)
Publication Year :
2021
Publisher :
American Geophysical Union (AGU), 2021.

Abstract

International audience; Approximately half of global primary production occurs in the ocean. While the large-scale variability in net primary production (NPP) has been extensively studied, ocean gross primary production (GPP) has thus far received less attention. In this study, we derived two satellite-based GPP models by training machine learning algorithms (Random Forest) with light-dark bottle incubations (GPPLD) and the triple isotopes of dissolved oxygen (GPP17Δ). The two algorithms predict global GPPs of 9.2 ± 1.3 × 1015 and 15.1 ± 1.05 × 1015 mol O2 yr−1 for GPPLD and GPP17Δ, respectively. The projected GPP distributions agree with our understanding of the mechanisms regulating primary production. Global GPP17Δ was higher than GPPLD by an average factor of 1.6 which varied meridionally. The discrepancy between GPP17Δ and GPPLD simulations can be partly explained by the known biases of each methodology. After accounting for some of these biases, the GPP17Δ and GPPLD converge to 9.5 ∼ 12.6 × 1015 mol O2 yr−1, equivalent to 103 ∼ 150 Pg C yr−1. Our results suggest that global oceanic GPP is 1.5–2.2 fold larger than oceanic NPP and comparable to GPP on land. © 2021. American Geophysical Union. All Rights Reserved.

Details

ISSN :
19449224 and 08866236
Volume :
35
Database :
OpenAIRE
Journal :
Global Biogeochemical Cycles
Accession number :
edsair.doi.dedup.....da5a6663451abb263a997c576599ab59
Full Text :
https://doi.org/10.1029/2020gb006718