1. Dual-Emission Ratiometric Fluorescent Probe Based on Lanthanide-Functionalized Carbon Quantum Dots for White Light Emission and Chemical Sensing
- Author
-
Han-Xun Qiu, Dan Liu, Ya-Qi Wang, Sai-Nan Wang, Ying Li, and Yu Gao
- Subjects
Lanthanide ,Photoluminescence ,Materials science ,General Chemical Engineering ,Nanoprobe ,General Chemistry ,Fluorescence ,Article ,chemistry.chemical_compound ,Chemistry ,Monomer ,chemistry ,X-ray photoelectron spectroscopy ,Physical chemistry ,Methyl methacrylate ,Fourier transform infrared spectroscopy ,QD1-999 - Abstract
Herein, we develop a novel method to synthesize lanthanide-functionalized carbon quantum dots via free-radical copolymerization using the methyl methacrylate (MMA) monomer as a functional monomer and introducing a lanthanide complex to obtain the dual-emission fluorescent composite material FCQDs-Ln(TFA)3 (Ln = Eu, Tb; TFA: trifluoroacetylacetone). The obtained composites were fully characterized, and their structures were investigated by Fourier transform infrared spectroscopy (FTIR), 1H NMR spectroscopy, X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). Subsequently, a series of white-light-emitting polymer composite films FCQDs- (Eu:Tb)(TFA)3/poly(methyl methacrylate) (PMMA) were designed and synthesized by adjusting the ratio of Eu(TFA)3/Tb(TFA)3 under different wavelengths. More significantly, FCQDs-Tb(TFA)3 was selected as a sensitive probe for sensing metal cations due to excellent photoluminescence properties, revealing a unique capability of FCQDs-Tb(TFA)3 of detecting Fe(III) cations with high efficiency and selectivity. Furthermore, the sensing experiment results indicated that FCQDs-Tb(TFA)3 is ideal as a fluorescent nanoprobe for Fe3+ ion detection, and the lowest detection limit for Fe3+ is 0.158 μM, which is superior to many other previous related research studies. This pioneering work provides a new idea and method for constructing a dual-emission ratio sensor based on carbon quantum dots and also extends the potential application in the biological and environmental fields.
- Published
- 2021