1. Tissue distribution and biochemical characteristics of receptors for sinus gland peptide VII as a crustacean hyperglycemic hormone and vitellogenesis-inhibiting hormone of the kuruma prawn, Marsupenaeus japonicus.
- Author
-
Nagai-Okatani C, Nagata S, and Nagasawa H
- Subjects
- Amino Acid Sequence, Animals, Cross-Linking Reagents metabolism, Eye metabolism, Hepatopancreas metabolism, Ligands, Protein Binding, Receptors, Cell Surface metabolism, Recombinant Proteins metabolism, Staining and Labeling, Time Factors, Tissue Distribution, Vitellogenesis, Arthropod Proteins metabolism, Carrier Proteins metabolism, Invertebrate Hormones metabolism, Nerve Tissue Proteins metabolism, Neuropeptides metabolism, Penaeidae metabolism
- Abstract
Crustacean hyperglycemic hormone (CHH) and vitellogenesis-inhibiting hormone (VIH) belong to the CHH family, a neuropeptide superfamily conserved in ecdysozoans. To date, no receptor for the CHH family peptides has been identified in crustaceans. Here, we used a CHH family isoform, Mj-sinus gland peptide (SGP)-VII, as a representative of CHH and VIH in order to determine its target tissues and obtain biochemical information regarding its receptor in the kuruma prawn Marsupenaeus japonicus (Crustacea, Decapoda). An in vitro binding assay using a radiolabeled recombinant Mj-SGP-VII and tissue membranes showed that ligand-receptor binding was specific and dissociable. Six tissues, including the hepatopancreas, gill, heart, skeletal muscle, hindgut, and ovary, were identified as the main targets for Mj-SGP-VII. Scatchard analysis of these six tissues determined the dissociation constant and maximum binding capacity values as K
d = 0.86-3.6 nM and Bmax = 102-915 fmol/mg protein, respectively. Of these six tissues, the hepatopancreas, heart, and ovary showed changes in the levels of ligand-binding after the elimination of endogenous ligands by eyestalk ablation. In the hepatopancreas, an increase in the amount of ligand-binding was observed after eyestalk ablation, independent of gender, which appears to be associated with hypoglycemia caused by the treatment. The change observed in the hepatopancreas was due to the increase in the ligand-binding capacity, but not in the ligand-binding affinity, of the receptors. Furthermore, chemical cross-linking analysis demonstrated the presence of target tissue-specific receptors for Mj-SGP-VII with molecular masses of 34-62 kDa. Collectively, the present data provided important information on tissue distribution, temporal changes in expression level, and molecular mass, for the identification and characterization of receptors for CHH family peptides in crustaceans., (Copyright © 2018. Published by Elsevier Inc.)- Published
- 2018
- Full Text
- View/download PDF