1. Epithelial Expressed B7-H4 Drives Differential Immunotherapy Response in Murine and Human Breast Cancer.
- Author
-
Wescott EC, Sun X, Gonzalez-Ericsson P, Hanna A, Taylor BC, Sanchez V, Bronzini J, Opalenik SR, Sanders ME, Wulfkuhle J, Gallagher RI, Gomez H, Isaacs C, Bharti V, Wilson JT, Ballinger TJ, Santa-Maria CA, Shah PD, Dees EC, Lehmann BD, Abramson VG, Hirst GL, Brown Swigart L, van ˈt Veer LJ, Esserman LJ, Petricoin EF, Pietenpol JA, and Balko JM
- Subjects
- Animals, Humans, Mice, Female, Cell Line, Tumor, Immune Checkpoint Inhibitors pharmacology, Immune Checkpoint Inhibitors therapeutic use, Breast Neoplasms immunology, Breast Neoplasms drug therapy, Breast Neoplasms pathology, Breast Neoplasms genetics, B7-H1 Antigen metabolism, B7-H1 Antigen antagonists & inhibitors, Epithelial Cells metabolism, Epithelial Cells immunology, Epithelial Cells drug effects, Gene Expression Regulation, Neoplastic drug effects, V-Set Domain-Containing T-Cell Activation Inhibitor 1 genetics, V-Set Domain-Containing T-Cell Activation Inhibitor 1 metabolism, Immunotherapy methods, Triple Negative Breast Neoplasms immunology, Triple Negative Breast Neoplasms drug therapy, Triple Negative Breast Neoplasms pathology, Triple Negative Breast Neoplasms genetics, Triple Negative Breast Neoplasms therapy
- Abstract
Combinations of immune checkpoint inhibitors (ICI, including anti-PD-1/PD-L1) and chemotherapy have been FDA approved for metastatic and early-stage triple-negative breast cancer (TNBC), but most patients do not benefit. B7-H4 is a B7 family ligand with proposed immunosuppressive functions being explored as a cancer immunotherapy target and may be associated with anti-PD-L1 resistance. However, little is known about its regulation and effect on immune cell function in breast cancers. We assessed murine and human breast cancer cells to identify regulation mechanisms of B7-H4 in vitro. We used an immunocompetent anti-PD-L1-sensitive orthotopic mammary cancer model and induced ectopic expression of B7-H4. We assessed therapy response and transcriptional changes at baseline and under treatment with anti-PD-L1. We observed B7-H4 was highly associated with epithelial cell status and transcription factors and found to be regulated by PI3K activity. EMT6 tumors with cell-surface B7-H4 expression were more resistant to immunotherapy. In addition, tumor-infiltrating immune cells had reduced immune activation signaling based on transcriptomic analysis. Paradoxically, in human breast cancer, B7-H4 expression was associated with survival benefit for patients with metastatic TNBC treated with carboplatin plus anti-PD-L1 and was associated with no change in response or survival for patients with early breast cancer receiving chemotherapy plus anti-PD-1. While B7-H4 induces tumor resistance to anti-PD-L1 in murine models, there are alternative mechanisms of signaling and function in human cancers. In addition, the strong correlation of B7-H4 to epithelial cell markers suggests a potential regulatory mechanism of B7-H4 independent of PD-L1., Significance: This translational study confirms the association of B7-H4 expression with a cold immune microenvironment in breast cancer and offers preclinical studies demonstrating a potential role for B7-H4 in suppressing response to checkpoint therapy. However, analysis of two clinical trials with checkpoint inhibitors in the early and metastatic settings argue against B7-H4 as being a mechanism of clinical resistance to checkpoints, with clear implications for its candidacy as a therapeutic target., (© 2024 The Authors; Published by the American Association for Cancer Research.)
- Published
- 2024
- Full Text
- View/download PDF