Back to Search Start Over

Epithelial Expressed B7-H4 Drives Differential Immunotherapy Response in Murine and Human Breast Cancer.

Authors :
Wescott EC
Sun X
Gonzalez-Ericsson P
Hanna A
Taylor BC
Sanchez V
Bronzini J
Opalenik SR
Sanders ME
Wulfkuhle J
Gallagher RI
Gomez H
Isaacs C
Bharti V
Wilson JT
Ballinger TJ
Santa-Maria CA
Shah PD
Dees EC
Lehmann BD
Abramson VG
Hirst GL
Brown Swigart L
van ˈt Veer LJ
Esserman LJ
Petricoin EF
Pietenpol JA
Balko JM
Source :
Cancer research communications [Cancer Res Commun] 2024 Apr 24; Vol. 4 (4), pp. 1120-1134.
Publication Year :
2024

Abstract

Combinations of immune checkpoint inhibitors (ICI, including anti-PD-1/PD-L1) and chemotherapy have been FDA approved for metastatic and early-stage triple-negative breast cancer (TNBC), but most patients do not benefit. B7-H4 is a B7 family ligand with proposed immunosuppressive functions being explored as a cancer immunotherapy target and may be associated with anti-PD-L1 resistance. However, little is known about its regulation and effect on immune cell function in breast cancers. We assessed murine and human breast cancer cells to identify regulation mechanisms of B7-H4 in vitro. We used an immunocompetent anti-PD-L1-sensitive orthotopic mammary cancer model and induced ectopic expression of B7-H4. We assessed therapy response and transcriptional changes at baseline and under treatment with anti-PD-L1. We observed B7-H4 was highly associated with epithelial cell status and transcription factors and found to be regulated by PI3K activity. EMT6 tumors with cell-surface B7-H4 expression were more resistant to immunotherapy. In addition, tumor-infiltrating immune cells had reduced immune activation signaling based on transcriptomic analysis. Paradoxically, in human breast cancer, B7-H4 expression was associated with survival benefit for patients with metastatic TNBC treated with carboplatin plus anti-PD-L1 and was associated with no change in response or survival for patients with early breast cancer receiving chemotherapy plus anti-PD-1. While B7-H4 induces tumor resistance to anti-PD-L1 in murine models, there are alternative mechanisms of signaling and function in human cancers. In addition, the strong correlation of B7-H4 to epithelial cell markers suggests a potential regulatory mechanism of B7-H4 independent of PD-L1.<br />Significance: This translational study confirms the association of B7-H4 expression with a cold immune microenvironment in breast cancer and offers preclinical studies demonstrating a potential role for B7-H4 in suppressing response to checkpoint therapy. However, analysis of two clinical trials with checkpoint inhibitors in the early and metastatic settings argue against B7-H4 as being a mechanism of clinical resistance to checkpoints, with clear implications for its candidacy as a therapeutic target.<br /> (© 2024 The Authors; Published by the American Association for Cancer Research.)

Details

Language :
English
ISSN :
2767-9764
Volume :
4
Issue :
4
Database :
MEDLINE
Journal :
Cancer research communications
Publication Type :
Academic Journal
Accession number :
38687247
Full Text :
https://doi.org/10.1158/2767-9764.CRC-23-0468