6 results on '"Jiang, Tong"'
Search Results
2. Projected changes of runoff in the Upper Yellow River Basin under shared socioeconomic pathways
- Author
-
Chen, Ziyan, Su, Buda, Zhao, Mengxia, Siu, Yim ling, Huang, Jinlong, Zhan, Mingjin, and Jiang, Tong
- Published
- 2024
- Full Text
- View/download PDF
3. Emerging Risk to Dengue in Asian Metropolitan Areas Under Global Warming.
- Author
-
Jing, Cheng, Wang, Guojie, Ebi, Kristie L., Su, Buda, Wang, Xiaoming, Chen, Dong, Jiang, Tong, and Kundzewicz, Zbigniew W.
- Subjects
CLIMATE change models ,AEDES aegypti ,VIRUS diseases ,DENGUE viruses ,ARBOVIRUS diseases - Abstract
Aedes sp. mosquitoes are changing their geographic range in response to climate change. This is of concern because these mosquitoes can carry dengue fever and other viral diseases. Changing weather patterns can also increase the numbers of Aedes mosquitoes, leading to greater human exposure and enhancing population health risks. We project the geographic distribution of Aedes and associated changes in populations exposed to dengue in Asian metropolitan areas under warming scenarios from 1.5°C to 5.0°C above pre‐industrial temperatures, using multi‐model ensembles. With global warming, the southern part of the Arabian Peninsula, the coast of the Arabian Sea in southern Iran, southern Pakistan in West Asia, the Korean Peninsula, most of the Japanese islands, and parts of North China in East Asia are projected to become suitable for dengue transmission. The numbers of metropolitan areas exposed to dengue is projected to change from 142 (48%) in the reference period (1995–2014) to 211 (71%) at 5.0°C warming. With the combined impact of socioeconomic and climate change, population exposure to dengue in Asian metropolitan areas is projected to increase from 263 (multi‐model range 252–268) million in 1995–2014 to 411 (394–432) million, 446 (420–490) million, 509 (475–601), 558 (493–685) and 587 (529–773) million, respectively, at 1.5°C, 2.0°C, 3.0°C, 4.0°C and 5°C warming, with an average of 2.9 million new people exposed to dengue fever in metropolitan areas each year. Plain Language Summary: Dengue fever, spread by Aedes aegypti and Aedes albopictus mosquitoes, is the most serious arbovirus disease affecting Asia. With global warming, mosquitoes that may carry dengue virus continue to expand in geographic range and vectorial capacity. Continued growth of mosquito populations can lead to a considerable increase in dengue exposure, especially in urban areas, increasing public health risks. Based on the occurrence data of the two mosquito species and climate observations, we explored the correlation between different climate elements and the spread of the mosquitoes. Using the outputs of 34 global climate models, we project the probability of occurrence and mosquito vectorial capacity under different warming levels in Asia. With global warming, much of Asia's area is projected to become suitable for dengue transmission. We have also estimated the future population changes in Asian metropolitan areas, to explore the combined effects of socioeconomy and climate change on exposure to dengue. As population density continues to increase and dengue epidemic potential rises, the population exposed to potential dengue fever transmission in Asian metropolitan areas is projected to surge in the future. Information conveyed in our paper can help increase preparedness for dengue outbreaks. Key Points: With global warming, a large number of areas in Asia are projected to become emerging regions suitable for dengue transmissionThe combined effects of climate and socioeconomic changes are projected to jointly lead to a surge in the population exposed to dengueAn average of 2.9 million new people are projected to be exposed to dengue fever in metropolitan areas each year in the future [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
4. Climate Change Will Aggravate South Asian Cropland Exposure to Drought by the Middle of 21st Century.
- Author
-
Mondal, Sanjit Kumar, Su, Buda, Huang, Jinlong, Zhai, Jianqing, Wang, Guojie, Kundzewicz, Zbigniew W., Wang, Yanjun, Jiang, Shan, Jiang, Han, Zhou, Jian, and Jiang, Tong
- Subjects
DROUGHT management ,DROUGHTS ,FARMS ,CLIMATE change ,CLIMATE change mitigation ,TWENTY-first century ,GOVERNMENT policy on climate change - Abstract
Drought has a paramount impact on global agriculture and food security. However, the study on future cropland areas that can incur drought is inadequate. This paper uses input parameters from 7 CMIP6 models for 7 future scenarios (SSP1‐1.9, SSP1‐2.6, SSP4‐3.4, SSP2‐4.5, SSP4‐6.0, SSP3‐7.0, and SSP5‐8.5) to measure South Asian cropland exposure to drought and its underlying factors. Some defined epochs such as 2021–2040 (near‐term), 2041–2060 (mid‐term), 2081–2100 (long‐term), and 1995–2014 (reference period) are designed to explore diverse outlooks of the change. The Standardized Precipitation Evapotranspiration Index and the Run theory methods are applied to detect drought. Results indicate an intensified cropland (under SSP4‐3.4, SSP3‐7.0, and SSP5‐8.5) in the Indo‐Gangetic Plain region of South Asia, where mostly the variation occurs among scenarios and periods. Notably, the future cropland exposed to drought will increase in the 2021–2040, and 2041–2060 periods, but it intends to decline during the 2081–2100. Relatively, the exposed cropland will upturn highest by 49.2% (SSP3‐7.0) in the mid‐term period and decrease by −8.2% (SSP5‐8.5) in the end future. Spatially, distributed cropland in the central, south‐west, and portion of the northeast of South Asia are subjective to be exposed largely, but it can drop greatly across the eastern part by the end future. Importantly, the climate change effect plays a grounding role in future exposure change over the region during the near to mid‐term periods, while the cropland change effect is predominant in the long‐term perspectives. However, these findings signify the urgency of policymaking focusing on drought mitigation to ensure food security. Plain Language Summary: Estimating drought‐induced cropland exposure is the pivotal aspect of agricultural risk assessment for drought impacts. The purposes of this study are to explore (a) how much of the cropland area would be exposed to drought under SSP scenarios; and (b) the degree to which climate change and cropland change effects contribute to changes in exposure. In this regard, we conducted a multi‐model and multi‐scenario‐based analysis to reveal variations in the cropland area exposed to drought in South Asia. Among the seven scenario combinations, the highest percentage of cropland exposed to drought was found at 49.2% (SSP3‐7.0) in the mid‐term epoch (2041–2060). The climate change effect seems to be the key contributor in the near‐term to mid‐term period, whereas it is the cropland change effect long‐term. To reduce drought risk, we recommend focusing on strong climate change mitigation policy development in the near‐ and mid‐term periods at a global scale and strict land‐use management policy interventions in the long‐term period at the regional level. Key Points: Larger cropland area will experience drought in the 2040–2060 period, while it will decline by the end of 21st centuryThe exposed cropland will increase by 49.2% under SSP3‐7.0 than that of historical timeThe climate change effect is the pivotal contributor in exposure changes over South Asia [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
5. Changes in Population Exposure to Rainstorm Waterlogging for Different Return Periods in the Xiong'an New Area, China.
- Author
-
Chen, Jiani, Wang, Yanjun, Chen, Ziyan, Si, Lili, Liu, Qingying, and Jiang, Tong
- Subjects
RAINSTORMS ,SUSTAINABLE urban development ,DEMOGRAPHIC change ,CLIMATE change ,CITY dwellers ,WATER depth - Abstract
In the context of global climate change and urban expansion, urban residents are encountering greater rainstorm waterlogging risk. Quantifying population exposure to rainstorms is an important component of rainstorm waterlogging risk assessments. This study utilized a two-dimensional hydrodynamic model to simulate the inundation water depth and inundation area resulting from rainstorms, with return periods of 5, 10, 50, and 100 years, in the Xiong'an New Area, and overlaid the gridded population data in 2017 and in 2035 under SSP2 to assess the change in population exposure. The results show that the average inundation depth and area increase were from 0.11 m and 207.9 km
2 to 0.18 m and 667.2 km2 as the rainstorm return period increased from once in 5 years to once in 100 years. The greatest water depths in the main urban areas were mainly located in the low-lying areas along the Daqing River. The total population exposed to rainstorm waterlogging for the 5-, 10-, 50-, and 100-year return periods was 0.31, 0.37, 0.50, and 0.53 million, respectively, in 2017. However, this is projected to rise significantly by 2035 under SSP2, increasing 2–4-fold compared with that in 2017 for the four return periods. Specifically, the projected population exposure is expected to be 0.7, 1.0, 1.8, and 2.0 million, respectively. The longer the return period, the greater the increase in population exposure. The proportion of the population exposed at the 0.05–0.2 m water depth to the total population exposure decreases as the return periods increases, whereas the proportion changes in the opposite direction at the 0.2–0.6 m and >0.6 m depth intervals. Spatially, high-exposure areas are concentrated in densely populated main urban regions in the Xiong'an New Area. In the future, more attention should be paid to densely populated low-lying areas and extreme recurrence rainstorm events for urban flood-risk management to ensure population safety and sustainable urban development. [ABSTRACT FROM AUTHOR]- Published
- 2024
- Full Text
- View/download PDF
6. Estimations of potential evapotranspiration from CMIP6 multi-model ensemble over Africa.
- Author
-
Yahaya, Ibrahim, Li, Zhenjie, Zhou, Jian, Jiang, Shan, Su, Buda, Huang, Jinlong, Xu, Runhong, Havea, Peni Hausia, and Jiang, Tong
- Subjects
- *
DROUGHT management , *GENERAL circulation model , *EVAPOTRANSPIRATION , *SOLAR radiation - Abstract
Potential evapotranspiration (PET) plays a pivotal role in resource management and drought assessment. However, future PET estimates remain underexplored in the African region. This study employs twenty General Circulation Models (GCMs) to estimate past (1979–2014) and future PET changes across near-term (2021–2040), mid-term (2061–2080), and long-term (2081–2100) periods, considering four Shared Socioeconomic Pathways (SSPs) including SSP1–2.6, SSP2–4.5, SSP3–7.0, and SSP5–8.5. The research assesses the impact of various climatic factors on PET across Africa and its sub-regions using the Penman-Monteith model. The analysis reveals that Penman-Monteith estimates for PET during 1979–2014 exhibit an increase of 0.68 mm per year (mm/a) across Africa. Notably, the Northern region (NAF), Sahara (SAH), Southern region (SAF), and Eastern region (EAF) experience higher PET changes of 1.78 mm/a, 1.75 mm/a, 1.09 mm/a, and 0.12 mm/a, respectively. Conversely, the Western region (WAF) and Central region (CAF) exhibit negative trends of −0.03 mm/a, and − 0.28 mm/a. Future PET in whole Africa is projected to increase by 0.05 mm/a in SSP1–2.6 and SSP2–4.5, and 0.07 mm/a in higher emissions for 2021–2040, by 0.02 mm/an under SSP1–2.6, 0.07 in SSP2–4.5, 0.09 mm/a, and 0.16 mm/a, in SSP3–7.0 and SSP5–8.5 for 2061–2080, and by −0.01 mm/a in SSP1–2.6, 0.05 mm/a SSP2–4.5, 0.10 mm/a SSP3–7.0, and 0.18 mm/a SSP5–8.5 for 2081–2100. Furthermore, higher emissions are anticipated to drive PET increases in various regions during 2081–2100, with NAF, SAH, and SAF projected to rise by 0.17 mm/a, 0.16 mm/a, and 0.23 mm/a, respectively. WAF, CAF, and EAF are expected to experience increases of 0.20 mm/a, 0.19 mm/a, and 0.15 mm/a, respectively. Contribution analysis indicates that solar radiation played a major factor in PET over Africa as well as in WAF, CAF, and EAF. Maximum temperatures were pivotal in NAF, SAH, and SAF. In future periods (2021-2040, 2061-2080, and 2081-2100), maximum temperatures take precedence to Africa's PET, and at varying percentages to different sub-regions. The findings underscore the significance of PET estimation, particularly in the context of drought evaluation locally and regionally. • PET estimates an increase of 0.68 mm/annum across Africa from 1979 to 2014. • PET is projected to increase under all scenarios, shows stronger in high forcing scenario. • Solar radiation contributed to PET in the past andmaximum temperatures in future but varies across periods and regions. • The study underscores the implications of PET estimations for drought evaluation. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.