1. Srs2 promotes synthesis-dependent strand annealing by disrupting DNA polymerase δ-extending D-loops
- Author
-
Jie Liu, Christopher Ede, William D Wright, Steven K Gore, Shirin S Jenkins, Bret D Freudenthal, M Todd Washington, Xavier Veaute, and Wolf-Dietrich Heyer
- Subjects
genome stability ,homologous rcombination ,crossover avoidance ,DNA helicase ,Medicine ,Science ,Biology (General) ,QH301-705.5 - Abstract
Synthesis-dependent strand annealing (SDSA) is the preferred mode of homologous recombination in somatic cells leading to an obligatory non-crossover outcome, thus avoiding the potential for chromosomal rearrangements and loss of heterozygosity. Genetic analysis identified the Srs2 helicase as a prime candidate to promote SDSA. Here, we demonstrate that Srs2 disrupts D-loops in an ATP-dependent fashion and with a distinct polarity. Specifically, we partly reconstitute the SDSA pathway using Rad51, Rad54, RPA, RFC, DNA Polymerase δ with different forms of PCNA. Consistent with genetic data showing the requirement for SUMO and PCNA binding for the SDSA role of Srs2, Srs2 displays a slight but significant preference to disrupt extending D-loops over unextended D-loops when SUMOylated PCNA is present, compared to unmodified PCNA or monoubiquitinated PCNA. Our data establish a biochemical mechanism for the role of Srs2 in crossover suppression by promoting SDSA through disruption of extended D-loops.
- Published
- 2017
- Full Text
- View/download PDF