1. m6A-modified circCacna1c regulates necroptosis and ischemic myocardial injury by inhibiting Hnrnpf entry into the nucleus
- Author
-
Yi Jia, Xiaosu Yuan, Luxin Feng, Qingling Xu, Xinyu Fang, Dandan Xiao, Qi Li, Yu Wang, Lin Ye, Peiyan Wang, Xiang Ao, and Jianxun Wang
- Subjects
circCacna1c ,Cardiomyocyte necroptosis ,Myocardial infarction ,N6-methyladenosine ,Hnrnpf ,Cytology ,QH573-671 - Abstract
Abstract Background Circular RNAs (circRNAs) are differentially expressed in various cardiovascular diseases, including myocardial infarction (MI) injury. However, their functional role in necroptosis-induced loss of cardiomyocytes remains unclear. We identified a cardiac necroptosis-associated circRNA transcribed from the Cacna1c gene (circCacna1c) to investigate the involvement of circRNAs in cardiomyocyte necroptosis. Methods To investigate the role of circCacna1c during oxidative stress, H9c2 cells and neonatal rat cardiomyocytes were treated with hydrogen peroxide (H2O2) to induce reactive oxygen species (ROS)-induced cardiomyocyte death. The N 6-methyladenosine (m6A) modification level of circCacna1c was determined by methylated RNA immunoprecipitation quantitative polymerase chain reaction (MeRIP–qPCR) analysis. Additionally, an RNA pull-down assay was performed to identify interacting proteins of circCacna1c in cardiomyocytes, and the regulatory role of circCacna1c in target protein expression was tested using a western blotting assay. Furthermore, the MI mouse model was constructed to analyze the effect of circCacna1c on heart function and cardiomyocyte necroptosis. Results The expression of circCacna1c was found to be reduced in cardiomyocytes exposed to oxidative stress and in mouse hearts injured by MI. Overexpression of circCacna1c inhibited necroptosis of cardiomyocytes induced by hydrogen peroxide and MI injury, resulting in a significant reduction in myocardial infarction size and improved cardiac function. Mechanistically, circCacna1c directly interacts with heterogeneous nuclear ribonucleoprotein F (Hnrnpf) in the cytoplasm, preventing its nuclear translocation and leading to reduced Hnrnpf levels within the nucleus. This subsequently suppresses Hnrnpf-dependent receptor-interacting protein kinase 1 (RIPK1) expression. Furthermore, fat mass and obesity-associated protein (FTO) mediates demethylation of m6A modification on circCacna1c during necrosis and facilitates degradation of circCacna1c. Conclusion Our study demonstrates that circCacna1c can improve cardiac function following MI-induced heart injury by inhibiting the Hnrnpf/RIPK1-mediated cardiomyocyte necroptosis. Therefore, the FTO/circCacna1c/Hnrnpf/RIPK1 axis holds great potential as an effective target for attenuating cardiac injury caused by necroptosis in ischemic heart disease. Graphical Abstract
- Published
- 2024
- Full Text
- View/download PDF