Back to Search Start Over

Path-Dependent Progressive Failure Analysis for 3D-Printed Continuous Carbon Fibre Reinforced Composites

Authors :
Yuan Chen
Lin Ye
Source :
Chinese Journal of Mechanical Engineering, Vol 37, Iss 1, Pp 1-10 (2024)
Publication Year :
2024
Publisher :
SpringerOpen, 2024.

Abstract

Abstract In order to predict the damage behaviours of 3D-printed continuous carbon fibre (CCF) reinforced composites, when additional short carbon fibre (SCF) composite components are employed for continuous printing or special functionality, a novel path-dependent progressive failure (PDPF) numerical approach is developed. First, a progressive failure model using Hashin failure criteria with continuum damage mechanics to account for the damage initiation and evaluation of 3D-printed CCF reinforced polyamide (PA) composites is developed, based on actual fibre placement trajectories with physical measurements of 3D-printed CCF/PA constituents. Meanwhile, an elastic-plastic model is employed to predict the plastic damage behaviours of SCF/PA parts. Then, the accuracy of the PDPF model was validated so as to study 3D-printed CCF/PA composites with either negative Poisson’s ratio or high stiffness. The results demonstrate that the proposed PDPF model can achieve higher prediction accuracies in mechanical properties of these 3D-printed CCF/PA composites. Mechanism analyses show that the stress distribution is generally aggregated in the CCF areas along the fibre placement paths, and the shear damage and matrix tensile/compressive damage are the key damage modes. This study provides a new approach with valuable information for characterising complex 3D-printed continuous fibre-matrix composites with variable mechanical properties and multiple constituents.

Details

Language :
English
ISSN :
21928258
Volume :
37
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Chinese Journal of Mechanical Engineering
Publication Type :
Academic Journal
Accession number :
edsdoj.8915ef75f667400182948698c0783ce0
Document Type :
article
Full Text :
https://doi.org/10.1186/s10033-024-01054-0