14 results on '"Boro Dropulic"'
Search Results
2. Armored BCMA CAR T Cells Eliminate Multiple Myeloma and Are Resistant to the Suppressive Effects of TGF-β
- Author
-
Leah M. Alabanza, Ying Xiong, Bang Vu, Brian Webster, Darong Wu, Peirong Hu, Zhongyu Zhu, Boro Dropulic, Pradyot Dash, and Dina Schneider
- Subjects
CAR T cells ,multiple myeloma ,cell therapy ,lentiviral (LV) vector ,TGF - β1 ,Immunologic diseases. Allergy ,RC581-607 - Abstract
CAR T-cell therapies targeting the B-cell maturation antigen eliminate tumors in relapsed/refractory multiple myeloma patients, however durable remissions remain difficult to attain. Transforming growth factor beta (TGF-β) is a multifunctional cytokine abundantly expressed in the multiple myeloma bone marrow niche, where it promotes an immunosuppressive tumor microenvironment. We hypothesized that BCMA CAR T-cells armored to resist the suppressive effects of TGF-β will provide an advantage in treating multiple myeloma. The armored B2ARM CAR T cells, co-expressing BCMA targeting CAR with TGF-β dominant-negative receptor II, were generated by lentiviral transduction of primary human CD4+ and CD8+ T cells. The B2ARM CAR T cells eliminated MM.1S multiple myeloma targets in long-term cytotoxicity assays, even under TGF-β-high conditions, whereas cytotoxic function of the non-armored B2 CAR -T cells was inhibited by TGF-β. Concordantly, after long-term exposure to targets in the presence of TGF-β, the B2ARM CAR T cells were enriched for Granzyme B, CD107a, Ki67 and polyfunctional cells T-cells (double or triple-positive for IFN-γ, IL-2 and/or TNF-α), as determined by flow cytometry. In addition, the B2ARM CAR T-cells, but not the conventional B2 CAR T-cells, resisted the TGF-β-mediated suppression of activation (CD25), exhaustion (PD-1, LAG3), and differentiation to T effectors (CD45RA+ CD45RO-CD62L-). In NSG mice bearing RPMI-8226 tumors overexpressing TGF-β, the B2ARM CAR mediated 100% tumor rejection and survival, superior infiltration of tumors on day 7 post CAR T treatment (%CD3+CAR+), and greater expression of IFN-γ, TNF-α, Ki67, Granzyme B, and PD-1, as compared to tumor-infiltrating non-armored B2 CAR T-cells. In NSG RPMI-8226 xenograft model in which tumors were additionally supplemented with TGF-β injections on days -1 through 11 of CAR T treatment, the B2ARM CAR T cells rejected tumors faster than the non-armored B2 CARs, and showed greater numbers of CD3+ and CD3+CAR+, central memory (CD45RO+CD62L+) and effector memory (CD45RO+CD62L-) T cells in the peripheral blood 18 days after treatment. In summary, the armored B2ARM CAR T cells mediate superior persistence, proliferation, multi-functionality, effector differentiation and anti-tumor function in pre-clinical models of multiple myeloma, while abrogating TGF-β-mediated suppression.
- Published
- 2022
- Full Text
- View/download PDF
3. Decentralized manufacturing of anti CD19 CAR-T cells using CliniMACS Prodigy®: real-world experience and cost analysis in India
- Author
-
Hamenth Kumar Palani, Arun Kumar Arunachalam, Mohammed Yasar, Arvind Venkatraman, Uday Kulkarni, Sharon Anbumalar Lionel, Sushil Selvarajan, Anu Korula, Aby Abraham, Biju George, Jennifer E. Adair, Rimas Orentas, Boro Dropulic, and Vikram Mathews
- Subjects
Transplantation ,Hematology - Abstract
Chimeric Antigen Receptor (CAR) T cell therapy is an accepted standard of care for relapsed/refractory B cell malignancies. However, the high cost of existing industry-driven centralized production makes this therapy unaffordable in low and middle-income countries. Decentralized or point of care manufacturing has the potential to overcome some of these challenges. Here we demonstrate a decentralized manufacturing process for anti-CD19-CAR-T cells using a fully automated closed system (Miltenyi CliniMACS Prodigy®) is feasible in a developing country setting. Validation run data, as part of a pre-clinical trial safety evaluation, demonstrates the successful and robust manufacturing of anti-CD19 CAR-T cells with T cell expansion of 25 to 47-fold. The median transduction efficiency was 48.8%, with a median viability of 98% and fulfillment of all standard release criteria assays for clinical application. Evaluation of production costs in an academic, not for profit setting in India provide a benchmark for low and middle-income pricing which could greatly increase access to this therapy. Based on our analysis, the cost per product would be approximately $35,107 US dollars. Our data highlights the safety, efficacy, and reproducibility of the process for use in planned future clinical trials.
- Published
- 2022
- Full Text
- View/download PDF
4. Circulating Tumor DNA Correlation with Lymphoma Response and Survival Outcomes at Multiple Time Points of Anti - CD19 CAR T Cell Therapy
- Author
-
Paolo F Caimi, Martina Di Trani, Armin Ghobadi, Jane Reese, Benjamin Tomlinson, Folashade Otegbeye, Kirsten M Boughan, Molly Gallogly, Leland Metheny, Brenda W. Cooper, Boro Dropulic, Marcos J.G. de Lima, and Carmelo Carlo-Stella
- Subjects
Immunology ,Cell Biology ,Hematology ,Biochemistry - Published
- 2022
- Full Text
- View/download PDF
5. Sequential Single-Cell Transcriptional and Protein Marker Profiling Reveals TIGIT as a Marker of CD19 CAR-T Cell Dysfunction in Patients with Non-Hodgkin Lymphoma
- Author
-
Zachary Jackson, Changjin Hong, Robert Schauner, Boro Dropulic, Paolo F. Caimi, Marcos de Lima, Maria Florencia Giraudo, Kalpana Gupta, Jane S. Reese, Tae Hyun Hwang, and David N. Wald
- Subjects
Receptors, Chimeric Antigen ,Oncology ,Lymphoma, Non-Hodgkin ,T-Lymphocytes ,Antigens, CD19 ,Receptors, Antigen, T-Cell ,Humans ,Receptors, Immunologic ,Immunotherapy, Adoptive ,Article - Abstract
Chimeric antigen receptor T-cell (CAR-T cell) therapy directed at CD19 produces durable remissions in the treatment of relapsed/refractory non-Hodgkin lymphoma (NHL). Nonetheless, many patients receiving CD19 CAR-T cells fail to respond for unknown reasons. To reveal changes in 4-1BB–based CD19 CAR-T cells and identify biomarkers of response, we used single-cell RNA sequencing and protein surface marker profiling of patient CAR-T cells pre- and postinfusion into patients with NHL. At the transcriptional and protein levels, we note the evolution of CAR-T cells toward a nonproliferative, highly differentiated, and exhausted state, with an enriched exhaustion profile in CAR-T cells of patients with poor response marked by TIGIT expression. Utilizing in vitro and in vivo studies, we demonstrate that TIGIT blockade alone improves the antitumor function of CAR-T cells. Altogether, we provide evidence of CAR-T cell dysfunction marked by TIGIT expression driving a poor response in patients with NHL. Significance: This is the first study investigating the mechanisms linked to CAR-T patient responses based on the sequential analysis of manufactured and infused CAR-T cells using single-cell RNA and protein expression data. Furthermore, our findings are the first to demonstrate an improvement of CAR-T cell efficacy with TIGIT inhibition alone. This article is highlighted in the In This Issue feature, p. 1825
- Published
- 2022
- Full Text
- View/download PDF
6. Supplementary Data from Sequential Single-Cell Transcriptional and Protein Marker Profiling Reveals TIGIT as a Marker of CD19 CAR-T Cell Dysfunction in Patients with Non-Hodgkin Lymphoma
- Author
-
David N. Wald, Tae Hyun Hwang, Jane S. Reese, Kalpana Gupta, Maria Florencia Giraudo, Marcos de Lima, Paolo F. Caimi, Boro Dropulic, Robert Schauner, Changjin Hong, and Zachary Jackson
- Abstract
Supplementary Data from Sequential Single-Cell Transcriptional and Protein Marker Profiling Reveals TIGIT as a Marker of CD19 CAR-T Cell Dysfunction in Patients with Non-Hodgkin Lymphoma
- Published
- 2023
- Full Text
- View/download PDF
7. Data from Sequential Single-Cell Transcriptional and Protein Marker Profiling Reveals TIGIT as a Marker of CD19 CAR-T Cell Dysfunction in Patients with Non-Hodgkin Lymphoma
- Author
-
David N. Wald, Tae Hyun Hwang, Jane S. Reese, Kalpana Gupta, Maria Florencia Giraudo, Marcos de Lima, Paolo F. Caimi, Boro Dropulic, Robert Schauner, Changjin Hong, and Zachary Jackson
- Abstract
Chimeric antigen receptor T-cell (CAR-T cell) therapy directed at CD19 produces durable remissions in the treatment of relapsed/refractory non-Hodgkin lymphoma (NHL). Nonetheless, many patients receiving CD19 CAR-T cells fail to respond for unknown reasons. To reveal changes in 4-1BB–based CD19 CAR-T cells and identify biomarkers of response, we used single-cell RNA sequencing and protein surface marker profiling of patient CAR-T cells pre- and postinfusion into patients with NHL. At the transcriptional and protein levels, we note the evolution of CAR-T cells toward a nonproliferative, highly differentiated, and exhausted state, with an enriched exhaustion profile in CAR-T cells of patients with poor response marked by TIGIT expression. Utilizing in vitro and in vivo studies, we demonstrate that TIGIT blockade alone improves the antitumor function of CAR-T cells. Altogether, we provide evidence of CAR-T cell dysfunction marked by TIGIT expression driving a poor response in patients with NHL.Significance:This is the first study investigating the mechanisms linked to CAR-T patient responses based on the sequential analysis of manufactured and infused CAR-T cells using single-cell RNA and protein expression data. Furthermore, our findings are the first to demonstrate an improvement of CAR-T cell efficacy with TIGIT inhibition alone.This article is highlighted in the In This Issue feature, p. 1825
- Published
- 2023
- Full Text
- View/download PDF
8. A Phase I Clinical Trial of Point-of-Care Manufactured Fresh Anti-CD19/20/22 Chimeric Antigen Receptor T Cells for Treatment of Relapsed or Refractory Lymphoid Malignancies (Non-Hodgkin Lymphoma, Acute Lymphoblastic Leukemia, Chronic Lymphocytic Leukemia, B Prolymphocytic Leukemia)
- Author
-
Sumithira Vasu, Lapo Alinari, Nicole Szuminski, Dina Schneider, Nathan Denlinger, Wing Keung Chan, Khalid Parris, Nidhi Sharma, Hillary Bradbury, Beth Daneault, Lynn O'Donnell, Boro Dropulic, and Marcos J.G. de Lima
- Subjects
Immunology ,Cell Biology ,Hematology ,Biochemistry - Published
- 2022
- Full Text
- View/download PDF
9. Distributive Manufacturing of CD19 CAR-T Cells Using Clinimacs Prodigy: Real-World Experience and Cost Analysis in India
- Author
-
Hamenth Kumar Palani, Arun Kumar Arunachalam, Nithya Balasundaram, Arvind Venkatraman, Mohammed Yasar M, Uday Kulkarni, Anup J Devasia, Fouzia NA, Anu Korula, Aby Abraham, Boro Dropulic, Biju George, and Vikram Mathews
- Subjects
Transplantation ,Molecular Medicine ,Immunology and Allergy ,Cell Biology ,Hematology - Published
- 2022
- Full Text
- View/download PDF
10. Abstract CT522: Feasibility and safety of a novel CD19 CAR T cell therapy in adults with R/R B-NHL
- Author
-
Manali Kamdar, Cheri Adams, Steven Bair, Boro Dropulic, Jonathon Gutman, Bradley Haverkos, Kimberly Jordan, Rebecca Mallo, Russell Marians, Felicia Mast, Lindsey Murphy, Andrew Roth, Matthew Seefeldt, Andrew Worden, Mike Kadan, Ying Xiong, Dina Schneider, Rimas Orentas, Terry Fry, and Michael Verneris
- Subjects
Cancer Research ,Oncology - Abstract
Genetically engineered chimeric antigen receptor (CAR) T cells have exhibited distinct effectiveness against chemotherapy refractory CD19 expressing B cell malignancies in both adults and children. This phase I clinical trial tests a novel anti-CD19 CAR T cell product in adults with relapsed/refractory (R/R) B-cell Non-Hodgkin’s Lymphoma (B-NHL). The CAR construct is comprised of the short chain variable regions of the anti-CD19 monoclonal antibody FMC63, the TNFRSF19-derived transmembrane domain, the 4-1BB costimulatory domain, and the CD3-zeta signaling domain. CD19 CAR T cells were manufactured utilizing the CliniMACS Prodigy® T Cell Transduction Process (CD3/CD28 TransAct™ reagent) allowing for highly automated production, with IL-7 and IL-15 used for T cell expansion for 8-12 days. To date, 7 patients have been treated with an average dose of 1.2 ± 0.2 x 108 CAR T cells. The histology includes marginal zone lymphoma (n=1), follicular lymphoma Grade IIIA (n=1), transformed lymphoma (n=3), follicular lymphoma low grade (n=2), and diffuse large B-cell lymphoma (n=1). One patient required a second apheresis due to poor cell expansion. Despite heterogeneity in disease subtype and leukapheresis product quality, CAR T production and expansion have been consistent with final transduction efficiencies between 14-45%, cell viability between 88-91%, and an overall average yield of 3.2 ± 0.3 x 109 cells before harvest, allowing for product banking. No safety-related out of specifications (OOS) events have occurred, however, 2 patients had OOS product infused due to low transduction efficiency (both at 14% rather than the ≥ 20% release criteria). Two patients experienced Grade 2 CRS, 1 patient experienced Grade 2 neurotoxicity; otherwise, no new safety signals were detected. Disease response was assessed on Days 90, 180, 270, and 360 post-infusion. The assessments were based on 2014 Lugano criteria. Even with 2 OOS products, Day 90 scans showed a complete metabolic remission (CMR) in 6 evaluable patients to date. Of the 6 patients with CMR, 1 patient progressed at Day 180 and the others remain in remission (median f/u = 12 months). Flow cytometry was utilized to measure CAR T cell peak expansion and persistence in 5 patients. Peak CAR T cell expansion (2.9-44.4% of CD3 cells) ranged from Day 5 to 15. Cell persistence was detected for the 5 patients through at least Day 180. ddPCR is currently in development to perform persistence testing in parallel. Additionally, cytokine concentrations including INFγ, IL-10, IL-12p70, IL-13, IL1β, IL-2, IL-4, IL-6, IL-8, and TNFα were evaluated over the first 30 days. Overall, 7 patients diagnosed with 5 different B-NHL subtypes have been treated with the CD19 CAR T cell product. Manufacturing was successful for all patients with no safety related OOS, and no new post-infusion safety signals detected. To date, 6 out of 7 patients are alive, 5 with CMR and with CD19 CAR T cell persistence through at least 180 days. Citation Format: Manali Kamdar, Cheri Adams, Steven Bair, Boro Dropulic, Jonathon Gutman, Bradley Haverkos, Kimberly Jordan, Rebecca Mallo, Russell Marians, Felicia Mast, Lindsey Murphy, Andrew Roth, Matthew Seefeldt, Andrew Worden, Mike Kadan, Ying Xiong, Dina Schneider, Rimas Orentas, Terry Fry, Michael Verneris. Feasibility and safety of a novel CD19 CAR T cell therapy in adults with R/R B-NHL [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr CT522.
- Published
- 2022
- Full Text
- View/download PDF
11. Abstract LB213: Potent antitumor activity of a FGFR4 CAR-T in rhabdomyosarcoma
- Author
-
Adam Tai Chi Cheuk, Meijie Tian, Nityashree Shivaprasad, Steven Highfill, David Milewski, G Tom Brown, Peter Azorsa, Dina Schneider, Berkley Gryder, Jun S Wei, Young Kwok Song, Hsien-Chao Chou, Jerry Wu, Joon-Yong Chung, Brian Belyea, Corinne Linardic, Stephen M Hewitt, Boro Dropulic, Rimas Orentas, and Javed Khan
- Subjects
Cancer Research ,Oncology - Abstract
Rhabdomyosarcoma (RMS) is an aggressive soft tissue sarcoma originating from skeletal muscle in children and adolescent young adults. Despite multi-modal aggressive therapies, relapsed, refractory or metastatic rhabdomyosarcoma remains a lethal disease with no significant improvement in outcome over decades of clinical trials. Therefore novel therapies are needed. FGFR4 is a developmentally regulated cell surface receptor tyrosine kinase that is overexpressed in RMS when compared with normal tissues, and mutationally activated in about 7.5% of RMS. Recently we showed that PAX3-FOXO1 establishes a super-enhancer in the FGFR4 genomic locus driving its high expression in fusion positive RMS. CAR T-cell therapy is effective in treating refractory and relapsed B-cell leukemia and lymphoma, with three CARs targeting CD19 approved by the FDA. Multiple CART trials are currently underway for solid tumors. Since FGFR4 is a cell surface protein, we hypothesized that FGFR4 will provide a rational target for immunotherapy in RMS. We confirmed by immunohistochemistry staining, western analysis, and Meso Scale Discovery that FGFR4 protein is highly differentially expressed in RMS samples. We developed a murine anti-FGFR4 antibody, 3A11, by immunizing mouse with FGFR4-IG fusion protein. 3A11 showed high affinity and specificity of binding to FGFR4. We then developed a second-generation CAR using the VL and VH domain of 3A11 antibody and found that the scFvFc retained its specificity and high affinity at nanomolar range. Human T cells transduced with 3A11 CAR construct were found to be highly potent at inducing IFN-γ, TNF-α, IL-2 and cytotoxicity when the FGFR4-CART was co-cultured with RMS cells, but not with RMS cells with FGFR4 knocked out or FGFR4 negative cells. 3A11 CART incubated with human primary cells obtained from liver, kidney, heart, and pancreas, did not elicit a cytokine response, indicating a low potential for “on-target off-tumor” toxicity. In vivo testing also found that 3A11 CART eliminated RMS cells in both murine xenograft metastatic and localized subcutaneous models. Therefore we have developed a CART targeting FGFR4 that shows high potency for treating RMS. A phase 1 FGFR4-CART clinical trial is planned for children and adolescent young adults with relapsed/refractory rhabdomyosarcoma. Citation Format: Adam Tai Chi Cheuk, Meijie Tian, Nityashree Shivaprasad, Steven Highfill, David Milewski, G Tom Brown, Peter Azorsa, Dina Schneider, Berkley Gryder, Jun S Wei, Young Kwok Song, Hsien-Chao Chou, Jerry Wu, Joon-Yong Chung, Brian Belyea, Corinne Linardic, Stephen M Hewitt, Boro Dropulic, Rimas Orentas, Javed Khan. Potent antitumor activity of a FGFR4 CAR-T in rhabdomyosarcoma [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr LB213.
- Published
- 2022
- Full Text
- View/download PDF
12. Ethical and practical considerations for cell and gene therapy toward an HIV cure: findings from a qualitative in-depth interview study in the United States
- Author
-
Karine Dubé, John Kanazawa, Hursch Patel, Michael Louella, Laurie Sylla, Jeff Sheehy, Lynda Dee, Jeff Taylor, Jen Adair, Kim Anthony-Gonda, Boro Dropulić, John A. Sauceda, Michael J. Peluso, Steven G. Deeks, and Jane Simoni
- Subjects
HIV ,HIV cure research ,Cell and gene therapy ,Empirical ethics research ,People living with HIV ,Medical philosophy. Medical ethics ,R723-726 - Abstract
Abstract Background HIV cure research involving cell and gene therapy has intensified in recent years. There is a growing need to identify ethical standards and safeguards to ensure cell and gene therapy (CGT) HIV cure research remains valued and acceptable to as many stakeholders as possible as it advances on a global scale. Methods To elicit preliminary ethical and practical considerations to guide CGT HIV cure research, we implemented a qualitative, in-depth interview study with three key stakeholder groups in the United States: (1) biomedical HIV cure researchers, (2) bioethicists, and (3) community stakeholders. Interviews permitted evaluation of informants’ perspectives on how CGT HIV cure research should ethically occur, and were transcribed verbatim. We applied conventional content analysis focused on inductive reasoning to analyze the rich qualitative data and derive key ethical and practical considerations related to CGT towards an HIV cure. Results We interviewed 13 biomedical researchers, 5 community members, and 1 bioethicist. Informants generated considerations related to: perceived benefits of CGT towards an HIV cure, perceived risks, considerations necessary to ensure an acceptable benefit/risk balance, CGT strategies considered unacceptable, additional ethical considerations, and considerations for first-in-human CGT HIV cure trials. Informants also proposed important safeguards to developing CGT approaches towards an HIV cure, such as the importance of mitigating off-target effects, mitigating risks associated with long-term duration of CGT interventions, and mitigating risks of immune overreactions. Conclusion Our study identified preliminary considerations for CGT-based HIV cure across three key stakeholder groups. Respondents identified an ideal cure strategy as one which would durably control HIV infection, protect the individual from re-acquisition, and eliminate transmission to others. Known and unknown risks should be anticipated and perceived as learning opportunities to preserve and honor the altruism of participants. Preclinical studies should support these considerations and be transparently reviewed by regulatory experts and peers prior to first-in-human studies. To protect the public trust in CGT HIV cure research, ethical and practical considerations should be periodically revisited and updated as the science continues to evolve. Additional ethics studies are required to expand stakeholder participation to include traditionally marginalized groups and clinical care providers.
- Published
- 2022
- Full Text
- View/download PDF
13. In vivo killing of primary HIV-infected cells by peripheral-injected early memory–enriched anti-HIV duoCAR T cells
- Author
-
Kim Anthony-Gonda, Alex Ray, Hang Su, Yuge Wang, Ying Xiong, Danica Lee, Ariele Block, Vanessa Chilunda, Jessica Weiselberg, Lily Zemelko, Yen Y. Wang, Sarah Kleinsorge-Block, Jane S. Reese, Marcos de Lima, Christina Ochsenbauer, John C. Kappes, Dimiter S. Dimitrov, Rimas Orentas, Steven G. Deeks, Rachel L. Rutishauser, Joan W. Berman, Harris Goldstein, and Boro Dropulić
- Subjects
AIDS/HIV ,Therapeutics ,Medicine - Abstract
HIV-specific chimeric antigen receptor–T cell (CAR T cell) therapies are candidates to functionally cure HIV infection in people with HIV (PWH) by eliminating reactivated HIV-infected cells derived from latently infected cells within the HIV reservoir. Paramount to translating such therapeutic candidates successfully into the clinic will require anti-HIV CAR T cells to localize to lymphoid tissues in the body and eliminate reactivated HIV-infected cells such as CD4+ T cells and monocytes/macrophages. Here we show that i.v. injected anti-HIV duoCAR T cells, generated using a clinical-grade anti-HIV duoCAR lentiviral vector, localized to the site of active HIV infection in the spleen of humanized mice and eliminated HIV-infected PBMCs. CyTOF analysis of preinfusion duoCAR T cells revealed an early memory phenotype composed predominantly of CCR7+ stem cell–like/central memory T cells (TSCM/TCM) with expression of some effector-like molecules. In addition, we show that anti-HIV duoCAR T cells effectively sense and kill HIV-infected CD4+ T cells and monocytes/macrophages. Furthermore, we demonstrate efficient genetic modification of T cells from PWH on suppressive ART into anti-HIV duoCAR T cells that subsequently kill autologous PBMCs superinfected with HIV. These studies support the safety and efficacy of anti-HIV duoCAR T cell therapy in our presently open phase I/IIa clinical trial (NCT04648046).
- Published
- 2022
- Full Text
- View/download PDF
14. Adjunct Therapy with T Regulatory Cells Decreases Inflammation and Preserves the Anti-Tumor Activity of CAR T Cells
- Author
-
Ke Zeng, Meixian Huang, Mi-Ae Lyu, Joseph D. Khoury, Sairah Ahmed, Krina K. Patel, Boro Dropulić, Jane Reese-Koc, Paolo F. Caimi, Tara Sadeghi, Marcos de Lima, Christopher R. Flowers, and Simrit Parmar
- Subjects
regulatory T cells ,CAR T cells ,CRS ,lymphoma ,allogeneic ,umbilical cord blood ,Cytology ,QH573-671 - Abstract
With greater accessibility and an increased number of patients being treated with CAR T cell therapy, real-world toxicity continues to remain a significant challenge to its widespread adoption. We have previously shown that allogeneic umbilical cord blood-derived (UCB) regulatory T cells (Tregs) can resolve inflammation and treat acute and immune-mediated lung injuries. Allogeneic, cryopreserved UCB Tregs have shown a clinical benefit in patients suffering from COVID-19 acute respiratory distress syndrome. The unique properties of UCB Treg cells include a lack of plasticity under inflammatory micro-environments, no requirement for HLA matching, a long shelf life of cryopreserved cells, and immediate product availability, which makes them attractive for treating acute inflammatory syndromes. Therefore, we hypothesized that adjunct therapy with UCB Tregs may resolve the undesirable inflammation responsible for CAR T cell therapy-associated toxicity. In in vitro analysis, no interference from the addition of UCB Tregs was observed on CD19 CAR T cells’ ability to kill CD19 Raji cells at different CAR T: Raji cell ratios of 8:1 (80.4% vs. 81.5%); 4:1 (62.0% vs. 66.2%); 2:1 (50.1% vs. 54.7%); and 1:1 (35.4% vs. 44.1%). In the xenogeneic B-cell lymphoma model, multiple injections of UCB Tregs were administered 3 days after CD19 CAR T cell injection, and no detrimental effect of add-on Tregs was noted on the circulating CD8+ T effector cells. The distribution of CAR T cells in multiple organs remained unaffected by the addition of the UCB Tregs. Specifically, no difference in the overall tumor burden was detected between the UCB Treg + CAR T vs. CAR T alone recipients. No tumor was detected in the liver or bone marrow in CAR T cells + UCB Tregs recipients, with a notable corresponding decrease in multiple circulating inflammatory cytokines when compared to CART alone recipients. Here we show the proof of concept for adjunct therapy with UCB Tregs to mitigate the hyper-inflammatory state induced by CAR T cells without any interference in their on-target anti-tumor activity. Administration of UCB Tregs after CAR T cells allows sufficient time for their synapse formation with tumor cells and exerts cytotoxicity, such that the UCB Tregs are diverted to interact with the antigen-presenting cells at the site of inflammation. Such a differential distribution of cells would allow for a two-pronged strategy of a UCB Treg “cooling blanket” effect and lay the groundwork for clinical study.
- Published
- 2023
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.