133 results on '"Tim Eifler"'
Search Results
2. Weak Lensing in the Blue: A Counter-intuitive Strategy for Stratospheric Observations
- Author
-
Mohamed M. Shaaban, Ajay S. Gill, Jacqueline McCleary, Richard J. Massey, Steven J. Benton, Anthony M. Brown, Christopher J. Damaren, Tim Eifler, Aurelien A. Fraisse, Spencer Everett, Mathew N. Galloway, Michael Henderson, Bradley Holder, Eric M. Huff, Mathilde Jauzac, William C. Jones, David Lagattuta, Jason S.-Y. Leung, Lun Li, Thuy Vy T. Luu, Johanna M. Nagy, C. Barth Netterfield, Susan F. Redmond, Jason D. Rhodes, Andrew Robertson, Jürgen Schmoll, Ellen Sirks, and Suresh Sivanandam
- Published
- 2022
- Full Text
- View/download PDF
3. Cosmology with the Roman Space Telescope - Multiprobe Strategies
- Author
-
Tim Eifler, Hironao Miyatake, Elisabeth Krause, Chen Heinrich, Vivian Miranda, Christopher Michael Hirata, Jiachuan Xu, Shoubaneh Hemmati, Melanie Simet, Peter Capak, Ami Choi, Olivier Dore, Cyrille Doux, Xiao Fang, Rebekah Alianora Hounsell, Eric Huff, Hung-Jin Huang, Mike Jarvis, Jeffrey Kruk, Dan Masters, Eduardo Rozo, Dan Scolnic, David N. Spergel, Michael Troxel, Anja von der Linden, Yun Wang, David H Weinberg, Lukas Wenzl, and Hao-Yi Wu
- Subjects
Instrumentation And Photography ,Astronomy - Abstract
We simulate the scientific performance of the Nancy Grace Roman Space Telescope High Latitude Survey (HLS) on dark energy and modified gravity. The 1.6-yr HLS Reference survey is currently envisioned to image 2000 deg2 in multiple bands to a depthof∼26.5 in Y, J, H and to cover the same area with slit-less spectroscopy beyond z=3. The combination of deep, multiband photometry and deep spectroscopy will allow scientists to measure the growth and geometry of the Universe through a variety of cosmological probes (e.g. weak lensing, galaxy clusters, galaxy clustering, BAO, Type Ia supernova) and, equally, it will allow an exquisite control of observational and astrophysical systematic effects. In this paper, we explore multiprobe strategies that can be implemented, given the telescope’s instrument capabilities. We model cosmological probes individually and jointly and account for correlated systematics and statistical uncertainties due to the higher order moments of the density field. We explore different levels of observational systematics for the HLS survey (photo-z and shear calibration) and ultimately run a joint likelihood analysis in N-dim parameter space. We find that the HLS reference survey alone can achieve a standard dark energy FoM of>300 when including all probes. This assumes no information from external data sets, we assume a flat universe however, and includes realistic assumptions for systematics. Our study of the HLS reference survey should be seen as part of a future community-driven effort to simulate and optimize the science return of the Roman Space Telescope.
- Published
- 2021
- Full Text
- View/download PDF
4. Modelling baryonic physics in future weak lensing surveys
- Author
-
Hung-Jin Huang, Tim Eifler, Rachel Mandelbaum, and Scott Dodelson
- Published
- 2019
- Full Text
- View/download PDF
5. Looking through the same lens: Shear calibration for LSST, Euclid, and WFIRST with stage 4 CMB lensing
- Author
-
Emmanuel Schaan, Elisabeth Krause, Tim Eifler, Olivier Doré, Hironao Miyatake, Jason Rhodes, and David N. Spergel
- Published
- 2017
- Full Text
- View/download PDF
6. Dark Energy Survey Year 3 results: cosmology with moments of weak lensing mass maps – validation on simulations
- Author
-
M. Smith, Daniel Gruen, D. W. Gerdes, F. Paz-Chinchón, D. J. James, J. Carretero, G. Tarle, Ian Harrison, J. Gschwend, Shantanu Desai, Marcos Lima, Kyler Kuehn, M. Carrasco Kind, Ramon Miquel, E. Suchyta, Juan Garcia-Bellido, August E. Evrard, Felipe Menanteau, Daniel Thomas, E. Buckley-Geer, Jennifer L. Marshall, L. Whiteway, Peter Doel, Juan Estrada, M. March, J. DeRose, L. F. Secco, Josh Frieman, V. Scarpine, Oliver Friedrich, Michael Schubnell, H. T. Diehl, Enrique Gaztanaga, Michael Troxel, T. M. C. Abbott, David Bacon, Martin Crocce, Pablo Fosalba, A. Carnero Rosell, Marcelle Soares-Santos, Niall MacCrann, S. Everett, Peter Melchior, David J. Brooks, R. Cawthon, Elisabeth Krause, E. J. Sanchez, Antonella Palmese, M. A. G. Maia, M. E. C. Swanson, A. A. Plazas, D. L. Burke, S. Santiago, J. Annis, I. Sevilla-Noarbe, T. McClintock, S. Allam, Robert A. Gruendl, J. De Vicente, L. N. da Costa, Santiago Avila, Carlos Solans Sanchez, Chihway Chang, Bhuvnesh Jain, M. D. Johnson, Joe Zuntz, Niall Jeffrey, I. Ferrero, Tim Eifler, G. Gutierrez, M. Gatti, Henry Luce Foundation, Department of Energy (US), National Science Foundation (US), Ministerio de Ciencia, Innovación y Universidades (España), Science and Technology Facilities Council (UK), University of Illinois, Kavli Institute for Theoretical Physics, University of Chicago, The Ohio State University, Texas A&M University, Financiadora de Estudos e Projetos (Brasil), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico (Brasil), Ministério da Ciência, Tecnologia e Inovação (Brasil), German Research Foundation, European Commission, Generalitat de Catalunya, and Fermilab
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Large-scale structure of Universe ,Higher education ,FOS: Physical sciences ,Library science ,Astrophysics::Cosmology and Extragalactic Astrophysics ,7. Clean energy ,01 natural sciences ,Gravitational lensing: weak ,Observatory ,0103 physical sciences ,media_common.cataloged_instance ,MECÂNICA ESTATÍSTICA ,European union ,Astronomy observatory ,010303 astronomy & astrophysics ,media_common ,Physics ,010308 nuclear & particles physics ,business.industry ,European research ,Cosmology: observations ,Astronomy and Astrophysics ,13. Climate action ,Space and Planetary Science ,Fundamental physics ,Christian ministry ,business ,National laboratory ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present a simulated cosmology analysis using the second and third moments of the weak lensing mass (convergence) maps. The second moment, or variances, of the convergence as a function of smoothing scale contains information similar to standard shear two-point statistics. The third moment, or the skewness, contains additional non-Gaussian information. The analysis is geared towards the third year (Y3) data from the Dark Energy Survey (DES), but the methodology can be applied to other weak lensing data sets. We present the formalism for obtaining the convergence maps from the measured shear and for obtaining the second and third moments of these maps given partial sky coverage. We estimate the covariance matrix from a large suite of numerical simulations. We test our pipeline through a simulated likelihood analyses varying 5 cosmological parameters and 10 nuisance parameters and identify the scales where systematic or modelling uncertainties are not expected to affect the cosmological analysis. Our simulated likelihood analysis shows that the combination of second and third moments provides a 1.5 per cent constraint on S8 σ8(ωm/0.3)0.5 for DES Year 3 data. This is 20 per cent better than an analysis using a simulated DES Y3 shear two-point statistics, owing to the non-Gaussian information captured by the inclusion of higher order statistics. This paper validates our methodology for constraining cosmology with DES Year 3 data, which will be presented in a subsequent paper., Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundac¸ao Carlos Chagas Filho de Amparo ˜ a Pesquisa do ` Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cient´ıfico e Tecnologico and the Minist ´ erio da Ci ´ encia, Tecnologia ˆ e Inovac¸ao, the Deutsche Forschungsgemeinschaft and the Collabo- ˜ rating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California, Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y ´ Tecnologicas-Madrid, the University of Chicago, University College ´ London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenossische Technische Hochschule (ETH) Z ¨ urich, Fermi ¨ National Accelerator Laboratory, the University of Illinois at UrbanaChampaign, the Institut de Ciencies de l’Espai (IEEC/CSIC), the ` Institut de F´ısica d’Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitat M¨ unchen, and the ¨ associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, the Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M University, and the OzDES Membership Consortium. Based in part on observations at Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The DES data management system is supported by the National Science Foundation under Grant Numbers AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2015- 71825, ESP2015-66861, FPA2015-68048, SEV-2016-0588, SEV2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union 7th Framework Program (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478. We acknowledge support from the Brazilian Instituto Nacional de Ciencia e Tecnologia (INCT) e-Universe (CNPq grant ˆ 465376/2014-2). This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
- Published
- 2020
7. Modelling the Milky Way – I. Method and first results fitting the thick disc and halo with DES-Y3 data
- Author
-
Erin Sheldon, M. E. C. Swanson, Alex Drlica-Wagner, R. L. C. Ogando, Enrique Gaztanaga, Andrew B. Pace, L. Girardi, M. Carrasco Kind, David J. Brooks, E. Balbinot, G. Tarle, G. Gutierrez, K. Bechtol, Adriano Pieres, Jennifer L. Marshall, B. Flaugher, Vinu Vikram, Marcelle Soares-Santos, E. Suchyta, A. Carnero Rosell, Juan Garcia-Bellido, E. Bertin, A. A. Plazas, Tenglin Li, Santiago Avila, Daniel Thomas, I. Sevilla-Noarbe, M. dal Ponte, K. Honscheid, J. Gschwend, N. Kuropatkin, Flavia Sobreira, Ramon Miquel, L. N. da Costa, Martin Groenewegen, S. Desai, H. T. Diehl, D. L. Burke, David J. James, Basilio X. Santiago, A. R. Walker, Pablo Fosalba, E. J. Sanchez, Robert A. Gruendl, J. De Vicente, Adam Amara, Kyler Kuehn, Tim Eifler, M. Smith, Daniel Gruen, D. W. Gerdes, D. L. Hollowood, S. Serrano, J. Carretero, Josh Frieman, M. A. G. Maia, Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), DES, Astronomy, Department of Energy (US), National Science Foundation (US), Ministerio de Ciencia, Innovación y Universidades (España), Science and Technology Facilities Council (UK), University of Illinois, Kavli Institute for Theoretical Physics, University of Chicago, The Ohio State University, Texas A&M University, Financiadora de Estudos e Projetos (Brasil), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico (Brasil), Ministério da Ciência, Tecnologia e Inovação (Brasil), and German Research Foundation
- Subjects
astro-ph.SR ,astro-ph.GA ,Milky Way ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Star count ,01 natural sciences ,7. Clean energy ,Galactic halo ,0103 physical sciences ,halo [Galaxy] ,stellar content [Galaxy] ,Astrophysics::Solar and Stellar Astrophysics ,Large Magellanic Cloud ,Galaxy: structure ,010303 astronomy & astrophysics ,Stellar density ,Solar and Stellar Astrophysics (astro-ph.SR) ,STFC ,Astrophysics::Galaxy Astrophysics ,Dwarf galaxy ,Physics ,Galaxy: stellar content ,010308 nuclear & particles physics ,RCUK ,Astronomy and Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Galaxy ,Galaxy: halo ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Globular cluster ,Astrophysics::Earth and Planetary Astrophysics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,structure [Galaxy] - Abstract
Full author list: A Pieres, L Girardi, E Balbinot, B Santiago, L N da Costa, A Carnero Rosell, A B Pace, K Bechtol, M A T Groenewegen, A Drlica-Wagner, T S Li, M A G Maia, R L C Ogando, M dal Ponte, H T Diehl, A Amara, S Avila, E Bertin, D Brooks, D L Burke, M Carrasco Kind, J Carretero, J De Vicente, S Desai, T F Eifler, B Flaugher, P Fosalba, J Frieman, J García-Bellido, E Gaztanaga, D W Gerdes, D Gruen, R A Gruendl, J Gschwend, G Gutierrez, D L Hollowood, K Honscheid, D J James, K Kuehn, N Kuropatkin, J L Marshall, R Miquel, A A Plazas, E Sanchez, S Serrano, I Sevilla-Noarbe, E Sheldon, M Smith, M Soares-Santos, F Sobreira, E Suchyta, M E C Swanson, G Tarle, D Thomas, V Vikram, A R Walker, We present a technique to fit the stellar components of the Galaxy by comparing Hess Diagrams (HDs) generated from TRILEGAL models to real data. We apply this technique, which we call MWFITTING, to photometric data from the first 3 yr of the Dark Energy Survey (DES). After removing regions containing known resolved stellar systems such as globular clusters, dwarf galaxies, nearby galaxies, the Large Magellanic Cloud, and the Sagittarius Stream, our main sample spans a total area of ~2300 deg2. We further explore a smaller subset (~1300 deg2) that excludes all regions with known stellar streams and stellar overdensities. Validation tests on synthetic data possessing similar properties to the DES data show that the method is able to recover input parameters with a precision better than 3 per cent. We fit the DES data with an exponential thick disc model and an oblate double power-law halo model. We find that the best-fitting thick disc model has radial and vertical scale heights of 2.67 ± 0.09 kpc and 925 ± 40 pc, respectively. The stellar halo is fit with a broken power-law density profile with an oblateness of 0.75 ± 0.01, an inner index of 1.82 ± 0.08, an outer index of 4.14 ± 0.05, and a break at 18.52 ± 0.27 kpc from the Galactic centre. Several previously discovered stellar overdensities are recovered in the residual stellar density map, showing the reliability of MWFITTING in determining the Galactic components. Simulations made with the best-fitting parameters are a promising way to predict Milky Way star counts for surveys such as the LSST and Euclid., The DESDM is supported by the National Science Foundation under grants AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2015-71825, ESP2015-66861, FPA2015-68048, SEV-2016-0588, SEV-2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Program (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478. We acknowledge support from the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO), through project number CE110001020, and the Brazilian Instituto Nacional de Ci?ncia e Tecnologia (INCT) do e-Universe (CNPq grant 465376/2014-2). This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Centre for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Centre for Cosmology and AstroParticle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundac¸ão Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciência, Tecnologia e Inovac¸ão, the Deutsche Forschungsgemeinschaft, and the Collaborating Institutions in the DES.
- Published
- 2020
8. 2D-FFTLog: efficient computation of real-space covariance matrices for galaxy clustering and weak lensing
- Author
-
Xiao Fang, Elisabeth Krause, and Tim Eifler
- Subjects
Physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Spacetime ,Computation ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Covariance ,Space (mathematics) ,Astrophysics - Astrophysics of Galaxies ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Frequency domain ,Dark energy ,Applied mathematics ,Astrophysics - Instrumentation and Methods for Astrophysics ,Cluster analysis ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Weak gravitational lensing ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Accurate covariance matrices for two-point functions are critical for inferring cosmological parameters in likelihood analyses of large-scale structure surveys. Among various approaches to obtaining the covariance, analytic computation is much faster and less noisy than estimation from data or simulations. However, the transform of covariances from Fourier space to real space involves integrals with two Bessel integrals, which are numerically slow and easily affected by numerical uncertainties. Inaccurate covariances may lead to significant errors in the inference of the cosmological parameters. In this paper, we introduce a 2D-FFTLog algorithm for efficient, accurate and numerically stable computation of non-Gaussian real space covariances for both 3D and projected statistics. The 2D-FFTLog algorithm is easily extended to perform real space bin-averaging. We apply the algorithm to the covariances for galaxy clustering and weak lensing for a Dark Energy Survey Year 3-like and a Rubin Observatory's Legacy Survey of Space and Time Year 1-like survey, and demonstrate that for both surveys, our algorithm can produce numerically stable angular bin-averaged covariances with the flat sky approximation, which are sufficiently accurate for inferring cosmological parameters. The code CosmoCov for computing the real space covariances with or without the flat sky approximation is released along with this paper., Comment: MNRAS accepted; 13 pages, 3 figures, 2 tables; fixed a typo in Eq.41; 2DFFTLog code available at https://github.com/xfangcosmo/2DFFTLog ; 3x2pt covariance code CosmoCov at https://github.com/CosmoLike/CosmoCov
- Published
- 2020
9. Dark Energy Survey Y3 results: blending shear and redshift biases in image simulations
- Author
-
Matthew R. Becker, J. Carretero, F. Paz-Chinchón, F. Tarsitano, Brian Yanny, Josh Frieman, David J. Brooks, M. March, Erin Sheldon, Martin Crocce, R. D. Wilkinson, Antonella Palmese, Carlos Solans Sanchez, M. Smith, M Rodriguez-Monroy, Peter Doel, R. L. C. Ogando, M. A. G. Maia, W. G. Hartley, Adriano Pieres, Daniel Gruen, J. Myles, D. L. Burke, V. Scarpine, B. Flaugher, H. T. Diehl, J. P. Dietrich, Juan Garcia-Bellido, D. W. Gerdes, David J. James, David Bacon, Alexandra Amon, G. Tarle, I. Harrison, Pablo Fosalba, Niall MacCrann, Agnès Ferté, J. Annis, E. Suchyta, I. Sevilla-Noarbe, S. Allam, Robert A. Gruendl, M. Soares-Santos, Peter Melchior, Maria E. S. Pereira, J. McCullough, K. D. Eckert, Daniel Thomas, K. Herner, T. N. Varga, Felipe Menanteau, M. Costanzi, E. Bertin, M. Gatti, M. Carrasco Kind, T. M. C. Abbott, Ramon Miquel, Michael Troxel, Paul Martini, Jennifer L. Marshall, J. Muir, Enrique Gaztanaga, J. Gschwend, A. Choi, D. L. Hollowood, A. Alarcon, Gary Bernstein, M. E. C. Swanson, Ofer Lahav, E. M. Huff, Chun-Hao To, K. Honscheid, A. Roodman, Tommaso Giannantonio, Samuel Hinton, E. J. Sanchez, Michel Aguena, S. Serrano, Robert Morgan, G. Gutierrez, Joe Zuntz, R. P. Rollins, A. Carnero Rosell, I. Ferrero, Matt J. Jarvis, Marcos Lima, Sarah Bridle, Scott Dodelson, Tim Eifler, S. Desai, Joseph J. Mohr, S. Everett, S. Samuroff, A. A. Plazas, L. F. Secco, J. de Vicente, Maccrann, N, Becker, M R, Mccullough, J, Amon, A, Gruen, D, Jarvis, M, Choi, A, Troxel, M A, Sheldon, E, Yanny, B, Herner, K, Dodelson, S, Zuntz, J, Eckert, K, Rollins, R P, Varga, T N, Bernstein, G M, Gruendl, R A, Harrison, I, Hartley, W G, Sevilla-Noarbe, I, Pieres, A, Bridle, S L, Myles, J, Alarcon, A, Everett, S, Sánchez, C, Huff, E M, Tarsitano, F, Gatti, M, Secco, L F, Abbott, T M C, Aguena, M, Allam, S, Annis, J, Bacon, D, Bertin, E, Brooks, D, Burke, D L, Carnero , Rosell, A, Carrasco , Kind, M, Carretero, J, Costanzi, M, Crocce, M, Pereira, M E S, De , Vicente, J, Desai, S, Diehl, H , T, Dietrich, J P, Doel, P, Eifler, T F, Ferrero, I, Ferté, A, Flaugher, B, Fosalba, P, Frieman, J, García-Bellido, J, Gaztanaga, E, Gerdes, D W, Giannantonio, T, Gschwend, J, Gutierrez, G, Hinton, S R, Hollowood, D L, Honscheid, K, James, D J, Lahav, O, Lima, M, Maia, M A G, March, M, Marshall, J L, Martini, P, Melchior, P, Menanteau, F, Miquel, R, Mohr, J J, Morgan, R, Muir, J, Ogando, R L C, Palmese, A, Paz-Chinchón, F, Plazas, A A, Rodriguez-Monroy, M, Roodman, A, Samuroff, S, Sanchez, E, Scarpine, V, Serrano, S, Smith, M, Soares-Santos, M, Suchyta, E, Swanson, M E C, Tarle, G, Thomas, D, To, C, Wilkinson, R D, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), European Commission, Generalitat de Catalunya, Ministerio de Economía y Competitividad (España), European Research Council, Department of Energy (US), National Aeronautics and Space Administration (US), and Fondo Nacional de Desarrollo Científico y Tecnológico (Chile)
- Subjects
Physics ,Large-scale structure of Universe ,010308 nuclear & particles physics ,Astronomy and Astrophysics ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Redshift ,Image (mathematics) ,gravitational lensing: weak ,large-scale structure of Universe ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Shear (sheet metal) ,Space and Planetary Science ,Gravitational lensing: weak ,weak [gravitational lensing] ,0103 physical sciences ,Dark energy ,010303 astronomy & astrophysics - Abstract
DES Collaboration: N. MacCrann et al., As the statistical power of galaxy weak lensing reaches per cent level precision, large, realistic, and robust simulations are required to calibrate observational systematics, especially given the increased importance of object blending as survey depths increase. To capture the coupled effects of blending in both shear and photometric redshift calibration, we define the effective redshift distribution for lensing, nγ(z), and describe how to estimate it using image simulations. We use an extensive suite of tailored image simulations to characterize the performance of the shear estimation pipeline applied to the Dark Energy Survey (DES) Year 3 data set. We describe the multiband, multi-epoch simulations, and demonstrate their high level of realism through comparisons to the real DES data. We isolate the effects that generate shear calibration biases by running variations on our fiducial simulation, and find that blending-related effects are the dominant contribution to the mean multiplicative bias of approximately −2 per cent . By generating simulations with input shear signals that vary with redshift, we calibrate biases in our estimation of the effective redshift distribution, and demonstrate the importance of this approach when blending is present. We provide corrected effective redshift distributions that incorporate statistical and systematic uncertainties, ready for use in DES Year 3 weak lensing analyses., Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciência, Tecnologia e Inovação, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenössische Technische Hochschule (ETH) Zürich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciències de l’Espai (IEEC/CSIC), the Institut de Física d’Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universität München and the associated Excellence Cluster Universe, the University of Michigan, NFS’s NOIRLab, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M University, and the OzDES Membership Consortium. Based in part on observations at Cerro Tololo Inter-American Observatory at NSF’s NOIRLab (NOIRLab Prop. ID 2012B-0001; PI: J. Frieman), which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The DES data management system is supported by the National Science Foundation under Grant Numbers AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MICINN under grants ESP2017-89838, PGC2018-094773, PGC2018-102021, SEV-2016-0588, SEV-2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478. We acknowledge support from the Brazilian Instituto Nacional de Ciência e Tecnologia (INCT) do e-Universo (CNPq grant 465376/2014-2). This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. NM acknowledges support from a European Research Council (ERC) Starting Grant under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 851274). MRB is supported by DOE grant DE-AC02-06CH11357. This work was supported by the Department of Energy, Laboratory Directed Research and Development program at SLAC National Accelerator Laboratory, under contract DE-AC02-76SF00515 and as part of the Panofsky Fellowship awarded to DG. MJ is partially supported by the U.S. Department of Energy grant DE-SC0007901 and funds from the University of Pennsylvania. AC acknowledges support from NASA grant 15-WFIRST15-0008. RR, IH, and SB acknowledge support from the European Research Council in the form of a Consolidator Grant with number 681431. IH also acknowledges support from the Beecroft Trust. We gratefully acknowledge the computing resources provided on Bebop, a high-performance computing cluster operated by the Laboratory Computing Resource Center at Argonne National Laboratory, and the RHIC Atlas Computing Facility, operated by Brookhaven National Laboratory. This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract No. DE-AC02-05CH11231.
- Published
- 2022
10. Kinematic Lensing with the Roman Space Telescope
- Author
-
Jiachuan Xu, Tim Eifler, Eric Huff, R S Pranjal, Hung-Jin Huang, Spencer Everett, and Elisabeth Krause
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Space and Planetary Science ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Kinematic lensing (KL) is a new cosmological measurement technique that combines traditional weak lensing (WL) shape measurements of disc galaxies with their kinematic information. Using the Tully-Fisher relation KL breaks the degeneracy between intrinsic and observed ellipticity and significantly reduces the impact of multiple systematics that are present in traditional WL. We explore the performance of KL given the instrument capabilities of the $\textit{Roman Space Telescope}$, assuming overlap of the High Latitude Imaging Survey (HLIS), the High Latitude Spectroscopy Survey (HLSS) over 2,000 deg$^2$. Our KL suitable galaxy sample has a number density of $n_{\mathrm{gal}}=4~\mathrm{arcmin}^{-1}$ with an estimated shape noise level of $\sigma_{\epsilon}=0.035$. We quantify the cosmological constraining power on $\Omega_{\mathrm{m}}$-$S_8$, $w_p$-$w_a$ by running simulated likelihood analyses that account for redshift and shear calibration uncertainties, intrinsic alignment and baryonic feedback. Compared to a traditional WL survey we find that KL significantly improves the constraining power on $\Omega_{\mathrm{m}}$-$S_8$ (FoM$_{\mathrm{KL}}$=1.70FoM$_{\mathrm{WL}}$) and $w_p$-$w_a$ (FoM$_{\mathrm{KL}}$=3.65FoM$_{\mathrm{WL}}$). We also explore a "narrow tomography KL survey" using 30 instead of the default 10 tomographic bins, however we find no meaningful enhancement to the FoM even when assuming a significant time-dependence in our fiducial dark energy input scenarios.
- Published
- 2022
- Full Text
- View/download PDF
11. Accelerating cosmological inference with Gaussian processes and neural networks -- an application to LSST Y1 weak lensing and galaxy clustering
- Author
-
Tim Eifler, Vivian Miranda, Supranta Sarma Boruah, and Sai Krishanth Pulikesi Mannan
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Space and Planetary Science ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Studying the impact of systematic effects, optimizing survey strategies, assessing tensions between different probes and exploring synergies of different data sets require a large number of simulated likelihood analyses, each of which cost thousands of CPU hours. In this paper, we present a method to accelerate cosmological inference using emulators based on Gaussian process regression and neural networks. We iteratively acquire training samples in regions of high posterior probability which enables accurate emulation of data vectors even in high dimensional parameter spaces. We showcase the performance of our emulator with a simulated 3x2 point analysis of LSST-Y1 with realistic theoretical and systematics modelling. We show that our emulator leads to high-fidelity posterior contours, with an order of magnitude speed-up. Most importantly, the trained emulator can be re-used for extremely fast impact and optimization studies. We demonstrate this feature by studying baryonic physics effects in LSST-Y1 3x2 point analyses where each one of our MCMC runs takes approximately 5 minutes. This technique enables future cosmological analyses to map out the science return as a function of analysis choices and survey strategy., Comment: 13 pages, 8 figures, To be submitted to MNRAS
- Published
- 2022
- Full Text
- View/download PDF
12. Galaxy–galaxy lensing with the DES-CMASS catalogue: measurement and constraints on the galaxy-matter cross-correlation
- Author
-
J. De Vicente, A. A. Plazas Malagón, M. March, W. G. Hartley, J. P. Dietrich, David J. Brooks, Juan Garcia-Bellido, Christopher M. Hirata, Dragan Huterer, Joseph J. Mohr, Jochen Weller, J. Carretero, F. J. Castander, G. Tarle, Carlos Solans Sanchez, E. Bertin, Adriano Pieres, Jack Elvin-Poole, B. Flaugher, M. Carrasco Kind, A. Roodman, F. Andrade-Oliveira, Tommaso Giannantonio, Samuel Hinton, V. Scarpine, Peter Doel, Chun-Hao To, David J. James, G. Gutierrez, Jennifer L. Marshall, E. J. Sanchez, M Gatti, J. DeRose, Ramon Miquel, Josh Frieman, Pablo Fosalba, Joe Zuntz, Maria E. S. Pereira, S. Lee, E. Suchyta, August E. Evrard, Enrique Gaztanaga, Erin Sheldon, Daniel Thomas, H. T. Diehl, Ofer Lahav, Y. Omori, M. Costanzi, A. Carnero Rosell, R. Cawthon, Robert Morgan, Ashley J. Ross, I. Ferrero, P. Vielzeuf, Michael Schubnell, Tim Eifler, Chihway Chang, Niall MacCrann, S. Desai, E. M. Huff, C. Davis, Michel Aguena, D. L. Burke, J. Gschwend, Gary Bernstein, S. Allam, Robert A. Gruendl, S. Samuroff, Ami Choi, Ben Hoyle, Antonella Palmese, M. A. G. Maia, I. Sevilla-Noarbe, N. Kuropatkin, T. N. Varga, L. N. da Costa, J. Prat, M. E. C. Swanson, Alexandra Amon, Felipe Menanteau, K. Honscheid, Michael Troxel, Marcos Lima, S. Everett, Kyler Kuehn, M. Smith, D. L. Hollowood, S. Serrano, Daniel Gruen, D. W. Gerdes, Christopher J. Conselice, Markus Rau, F. Paz-Chinchón, Lee, S., Troxel, M. A., Choi, A., Elvin-Poole, J., Hirata, C., Honscheid, K., Huff, E. M., Maccrann, N., Ross, A. J., Eifler, T. F., Chang, C., Miquel, R., Omori, Y., Prat, J., Bernstein, G. M., Davis, C., Derose, J., Gatti, M., Rau, M. M., Samuroff, S., Sanchez, C., Vielzeuf, P., Zuntz, J., Aguena, M., Allam, S., Amon, A., Andrade-Oliveira, F., Bertin, E., Brooks, D., Burke, D. L., Rosell, A. C., Kind, M. C., Carretero, J., Castander, F. J., Cawthon, R., Conselice, C., Costanzi, M., da Costa, L. N., Pereira, M. E. S., de Vicente, J., Desai, S., Diehl, H. T., Dietrich, J. P., Doel, P., Everett, S., Evrard, A. E., Ferrero, I., Flaugher, B., Fosalba, P., Frieman, J., Garcia-Bellido, J., Gaztanaga, E., Gerdes, D. W., Giannantonio, T., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hartley, W. G., Hinton, S. R., Hollowood, D. L., Hoyle, B., Huterer, D., James, D. J., Kuehn, K., Kuropatkin, N., Lahav, O., Lima, M., Maia, M. A. G., March, M., Marshall, J. L., Menanteau, F., Mohr, J. J., Morgan, R., Palmese, A., Paz-Chinchon, F., Pieres, A., Malagon, A. A. P., Roodman, A., Sanchez, E., Scarpine, V., Schubnell, M., Serrano, S., Sevilla-Noarbe, I., Sheldon, E., Smith, M., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., To, C., Varga, T. N., Weller, J., Duke University, Ohio State University, California Institute of Technology, University of Cambridge, University of Arizona, University of Chicago, Institució Catalana de Recerca i Estudis Avançats, Barcelona Institute of Science and Technology, Stanford University, University of Pennsylvania, 501 Campbell Hall, Santa Cruz Institute for Particle Physics, Carnegie Mellon University, University of Edinburgh, Universidade de São Paulo (USP), Laboratório Interinstitucional de e-Astronomia - LIneA, Fermi National Accelerator Laboratory, Universidade Estadual Paulista (UNESP), Institut d’Astrophysique de Paris, University College London, SLAC National Accelerator Laboratory, Instituto de Astrofisica de Canarias, Dpto. Astrofisica, National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Institut d’Estudis Espacials de Catalunya (IEEC), CSIC), University of Wisconsin-Madison, University of Manchester, School of Physics and Astronomy, University of Trieste, INAF-Osservatorio Astronomico di Trieste, Institute for Fundamental Physics of the Universe, Observatório Nacional, University of Michigan, Medioambientales y Tecnológicas (CIEMAT), IIT Hyderabad, Ludwig-Maximilians-Universität, University of Oslo, Universidad Autonoma de Madrid, University of Geneva, University of Queensland, Max Planck Institute for Extraterrestrial Physics, Harvard & Smithsonian, Macquarie University, Lowell Observatory, Texas A&M University, Peyton Hall, Brookhaven National Laboratory, University of Southampton, Oak Ridge National Laboratory, University of Portsmouth, Ludwig-Maximilians Universität München, Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), DES, UAM. Departamento de Física Teórica, Department of Energy (US), National Science Foundation (US), National Aeronautics and Space Administration (US), Simons Foundation, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), Ministerio de Economía y Competitividad (España), European Commission, Generalitat de Catalunya, European Space Agency, and European Research Council
- Subjects
Physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Cross-correlation ,Gravitational lensing ,Large-scale structure of universe ,Física ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Galaxy ,Space and Planetary Science ,0103 physical sciences ,Large-scale structure of the Universe ,010306 general physics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
DES collaboration: et al., The DMASS sample is a photometric sample from the DES Year 1 data set designed to replicate the properties of the CMASS sample from BOSS, in support of a joint analysis of DES and BOSS beyond the small overlapping area. In this paper, we present the measurement of galaxy–galaxy lensing using the DMASS sample as gravitational lenses in the DES Y1 imaging data. We test a number of potential systematics that can bias the galaxy–galaxy lensing signal, including those from shear estimation, photometric redshifts, and observing conditions. After careful systematic tests, we obtain a highly significant detection of the galaxy–galaxy lensing signal, with total S/N = 25.7. With the measured signal, we assess the feasibility of using DMASS as gravitational lenses equivalent to CMASS, by estimating the galaxy-matter cross-correlation coefficient rcc. By jointly fitting the galaxy–galaxy lensing measurement with the galaxy clustering measurement from CMASS, we obtain rcc=1.09+0.12−0.11 for the scale cut of 4h−1Mpc and rcc=1.06+0.13−0.12 for 12h−1Mpc in fixed cosmology. By adding the angular galaxy clustering of DMASS, we obtain rcc = 1.06 ± 0.10 for the scale cut of 4h−1Mpc and rcc = 1.03 ± 0.11 for 12h−1Mpc. The resulting values of rcc indicate that the lensing signal of DMASS is statistically consistent with the one that would have been measured if CMASS had populated the DES region within the given statistical uncertainty. The measurement of galaxy–galaxy lensing presented in this paper will serve as part of the data vector for the forthcoming cosmology analysis in preparation., AC acknowledges support from NASA grant 15-WFIRST15-0008. During the preparation of this paper, C.H. was supported by the Simons Foundation, NASA, and the U.S. Department of Energy. Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciência, Tecnologia e Inovação, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenössische Technische Hochschule (ETH) Zürich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciències de l’Espai (IEEC/CSIC), the Institut de Física d’Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universität München and the associated Excellence Cluster Universe, the University of Michigan, NFS’s NOIRLab, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M University, and the OzDES Membership Consortium. Based in part on observations at Cerro Tololo Inter-American Observatory at NSF’s NOIRLab (NOIRLab Prop. ID 2012B-0001; PI: J. Frieman), which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The DES data management system is supported by the National Science Foundation under Grant Numbers AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MICINN under grants ESP2017-89838, PGC2018-094773, PGC2018-102021, SEV-2016-0588, SEV-2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA programme of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478. We acknowledge support from the Brazilian Instituto Nacional de Ciência e Tecnologia (INCT) do e-Universo (CNPq grant 465376/2014-2). This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III web site is http://www.sdss3.org/. SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University. This work used resources at the Owens Cluster at the Ohio Supercomputer Center (OSC 1987) and the Duke Compute Cluster (DCC) at Duke University.
- Published
- 2022
13. Reprint of 'Evidence for color dichotomy in the primordial Neptunian Trojan population'
- Author
-
Peter Doel, V. Scarpine, Kyle Franson, Larissa Markwardt, Pedro Bernadinelli, Carlos E. Cunha, Tim Eifler, E. Suchyta, Douglas L. Tucker, Tali Khain, I. Sevilla-Noarbe, Kyler Kuehn, Salcedo Romero de Ávila, J. Annis, L. N. da Costa, Fred C. Adams, Alistair R. Walker, Marcelle Soares-Santos, T. M. C. Abbott, David J. Brooks, K. Honscheid, E. J. Sanchez, Jennifer L. Marshall, W. C. Wester, B. Flaugher, Juan Garcia-Bellido, Juliette C. Becker, D. L. Hollowood, A. A. Plazas, Ramon Miquel, S. Allam, R. C. Smith, M. A. G. Maia, C. B. D'Andrea, S. Hamilton, M. Carrasco Kind, Masao Sako, G. Tarle, A. Carnero Rosell, Flavia Sobreira, David J. James, J. De Vicente, Hsing Wen Lin, Gary Bernstein, M. Smith, A. K. Romer, D. W. Gerdes, and N. P. Kuropatkin
- Subjects
Physics ,Solar System ,education.field_of_study ,Planetesimal ,010504 meteorology & atmospheric sciences ,media_common.quotation_subject ,Population ,Astronomy ,Astronomy and Astrophysics ,01 natural sciences ,Jovian ,Space and Planetary Science ,Trojan ,Planet ,0103 physical sciences ,Trans-Neptunian object ,Eccentricity (behavior) ,education ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,media_common - Abstract
In the current model of early Solar System evolution, the stable members of the Jovian and Neptunian Trojan populations were captured into resonance from the leftover reservoir of planetesimals during the outward migration of the giant planets. As a result, both Jovian and Neptunian Trojans share a common origin with the primordial disk population, whose other surviving members constitute today’s trans-Neptunian object (TNO) populations. The cold (low inclination and small eccentricity) classical TNOs are ultra-red, while the dynamically excited “hot” (high inclination and larger eccentricity) population of TNOs contains a mixture of ultra-red and blue objects. In contrast, Jovian and Neptunian Trojans are observed to be blue. While the absence of ultra-red Jovian Trojans can be readily explained by the sublimation of volatile material from their surfaces due to the high flux of solar radiation at 5 AU, the lack of ultra-red Neptunian Trojans presents both a puzzle and a challenge to formation models. In this work we report the discovery by the Dark Energy Survey (DES) of two new dynamically stable L4 Neptunian Trojans, 2013 VX30 and 2014 UU240, both with inclinations i > 30°, making them the highest-inclination known stable Neptunian Trojans. We have measured the colors of these and three other dynamically stable Neptunian Trojans previously observed by DES, and find that 2013 VX30 is ultra-red, the first such Neptunian Trojan in its class. As such, 2013 VX30 may be a “missing link” between the Trojan and TNO populations. Using a simulation of the DES TNO detection efficiency, we find that there are 162 ± 73 Trojans with Hr
- Published
- 2019
14. Cosmology with the Roman Space Telescope -- Synergies with CMB lensing
- Author
-
Lukas Wenzl, Cyrille Doux, Chen Heinrich, Rachel Bean, Bhuvnesh Jain, Olivier Doré, Tim Eifler, and Xiao Fang
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Space and Planetary Science ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We explore synergies between the Nancy Grace Roman Space Telescope and CMB lensing data to constrain dark energy and modified gravity scenarios. A simulated likelihood analysis of the galaxy clustering and weak lensing data from the Roman Space Telescope High Latitude Survey combined with CMB lensing data from the Simons Observatory is undertaken, marginalizing over important astrophysical effects and calibration uncertainties. Included in the modeling are the effects of baryons on small-scale clustering, scale-dependent growth suppression by neutrinos, as well as uncertainties in the galaxy clustering biases, in the intrinsic alignment contributions to the lensing signal, in the redshift distributions, and in the galaxy shape calibration. The addition of CMB lensing roughly doubles the dark energy figure-of-merit from Roman photometric survey data alone, varying from a factor of 1.7 to 2.4 improvement depending on the particular Roman survey configuration. Alternatively, the inclusion of CMB lensing information can compensate for uncertainties in the Roman galaxy shape calibration if it falls below the design goals. Furthermore, we report the first forecast of Roman constraints on a model-independent structure growth, parameterized by $\sigma_8 (z)$, and on the Hu-Sawicki f(R) gravity as well as an improved forecast of the phenomenological $(\Sigma_0,\mu_0)$ model. We find that CMB lensing plays a crucial role in constraining $\sigma_8(z)$ at z>2, with percent-level constraints forecasted out to z=4. CMB lensing information does not improve constraints on the f(R) models substantially. It does, however, increase the $(\Sigma_0,\mu_0)$ figure-of-merit by a factor of about 1.5., Comment: 19 pages, 12 figures, replaced with accepted version in MNRAS
- Published
- 2021
15. Cosmology with the Roman Space Telescope: synergies with the Rubin Observatory Legacy Survey of Space and Time
- Author
-
Peter Capak, Niall MacCrann, Lukas Wenzl, Hironao Miyatake, Elisabeth Krause, David N. Spergel, Chen Heinrich, David H. Weinberg, Bhuvnesh Jain, Hao-Yi Wu, Jiachuan Xu, Olivier Doré, Shoubaneh Hemmati, C. Doux, Paul Rogozenski, E. M. Huff, Anja von der Linden, Christopher M. Hirata, Melanie Simet, Vivian Miranda, Xiao Fang, Rachel Mandelbaum, Michael Troxel, Mike Jarvis, Tim Eifler, Hung-Jin Huang, D. Masters, Ami Choi, Jeffrey W. Kruk, Eduardo Rozo, and Yun Wang
- Subjects
Physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Cosmology ,Redshift ,Galaxy ,law.invention ,Telescope ,Spitzer Space Telescope ,Space and Planetary Science ,Observatory ,law ,Dark energy ,Weak gravitational lensing - Abstract
We explore synergies between the space-based Wide-Field Infrared Survey Telescope (WFIRST) and the ground-based Rubin Observatory Legacy Survey of Space and Time (LSST). In particular, we consider a scenario where the currently envisioned survey strategy for WFIRST's High Latitude Survey (HLS), i.e., 2000 square degrees in four narrow photometric bands is altered in favor of a strategy that combines rapid coverage of the LSST area (to full LSST depth) in one band. We find that a 5-month WFIRST survey in the W-band can cover the full LSST survey area providing high-resolution imaging for >95% of the LSST Year 10 gold galaxy sample. We explore a second, more ambitious scenario where WFIRST spends 1.5 years covering the LSST area. For this second scenario we quantify the constraining power on dark energy equation of state parameters from a joint weak lensing and galaxy clustering analysis, and compare it to an LSST-only survey and to the Reference WFIRST HLS survey. Our survey simulations are based on the WFIRST exposure time calculator and redshift distributions from the CANDELS catalog. Our statistical uncertainties account for higher-order correlations of the density field, and we include a wide range of systematic effects, such as uncertainties in shape and redshift measurements, and modeling uncertainties of astrophysical systematics, such as galaxy bias, intrinsic galaxy alignment, and baryonic physics. Assuming the 5-month WFIRST wide scenario, we find a significant increase in constraining power for the joint LSST+WFIRST wide survey compared to LSST Y10 (FoM(Wwide)= 2.4 FoM(LSST)) and compared to LSST+WFIRST HLS (FoM(Wwide)= 5.5 FoM(HLS)).
- Published
- 2021
16. Weak Lensing in the Blue: A Counter-intuitive Strategy for Stratospheric Observations
- Author
-
Mohamed M. Shaaban, Ajay S. Gill, Jacqueline McCleary, Richard J. Massey, Steven J. Benton, Anthony M. Brown, Christopher J. Damaren, Tim Eifler, Aurelien A. Fraisse, Spencer Everett, Mathew N. Galloway, Michael Henderson, Bradley Holder, Eric M. Huff, Mathilde Jauzac, William C. Jones, David Lagattuta, Jason S.-Y. Leung, Lun Li, Thuy Vy T. Luu, Johanna M. Nagy, C. Barth Netterfield, Susan F. Redmond, Jason D. Rhodes, Andrew Robertson, Jürgen Schmoll, Ellen Sirks, and Suresh Sivanandam
- Subjects
Space and Planetary Science ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) - Abstract
The statistical power of weak lensing measurements is principally driven by the number of high-redshift galaxies whose shapes are resolved. Conventional wisdom and physical intuition suggest this is optimized by deep imaging at long (red or near-IR) wavelengths, to avoid losing redshifted Balmer-break and Lyman-break galaxies. We use the synthetic Emission Line (“EL”)-COSMOS catalog to simulate lensing observations using different filters, from various altitudes. Here were predict the number of exposures to achieve a target z ≳ 0.3 source density, using off-the-shelf and custom filters. Ground-based observations are easily better at red wavelengths, as (more narrowly) are space-based observations. However, we find that SuperBIT, a diffraction-limited observatory operating in the stratosphere, should instead perform its lensing-quality observations at blue wavelengths.
- Published
- 2022
17. Cosmology from Clustering, Cosmic Shear, CMB Lensing, and Cross Correlations: Combining Rubin Observatory and Simons Observatory
- Author
-
Tim Eifler, Emmanuel Schaan, Simone Ferraro, Elisabeth Krause, Xiao Fang, and Hung-Jin Huang
- Subjects
Physics ,theory [cosmology] ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,COSMIC cancer database ,Calibration (statistics) ,Cosmic microwave background ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astronomy & Astrophysics ,Galaxy ,Cosmology ,Space and Planetary Science ,Observatory ,Dark energy ,large-scale structure of Universe ,cosmological parameters ,Cluster analysis ,Astronomical and Space Sciences ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
In the near future, the overlap of the Rubin Observatory Legacy Survey of Space and Time (LSST) and the Simons Observatory (SO) will present an ideal opportunity for joint cosmological dataset analyses. In this paper we simulate the joint likelihood analysis of these two experiments using six two-point functions derived from galaxy position, galaxy shear, and CMB lensing convergence fields. Our analysis focuses on realistic noise and systematics models and we find that the dark energy Figure-of-Merit (FoM) increases by 53% (92%) from LSST-only to LSST+SO in Year 1 (Year 6). We also investigate the benefits of using the same galaxy sample for both clustering and lensing analyses, and find the choice improves the overall signal-to-noise by ~30-40%, which significantly improves the photo-z calibration and mildly improves the cosmological constraints. Finally, we explore the effects of catastrophic photo-z outliers finding that they cause significant parameter biases when ignored. We develop a new mitigation approach termed "island model", which corrects a large fraction of the biases with only a few parameters while preserving the constraining power., 16 pages, 9 figures, 4 tables, matching MNRAS accepted version
- Published
- 2021
18. Assessing tension metrics with dark energy survey and Planck data
- Author
-
Martin Crocce, Antonella Palmese, G. Tarle, I. Ferrero, Matt J. Jarvis, Samuel Hinton, J. Myles, David J. James, G. Gutierrez, Tim Eifler, M. A. G. Maia, M. Rodriguez-Monroy, A. Roodman, Tommaso Giannantonio, R. P. Rollins, Pablo Fosalba, D. L. Burke, J. De Vicente, J. DeRose, E. Suchyta, M Gatti, Josh Frieman, Elisabeth Krause, M. Costanzi, M. E. C. Swanson, W. G. Hartley, Joseph J. Mohr, Ben Hoyle, August E. Evrard, Juan Garcia-Bellido, Daniel Thomas, S. Samuroff, Jack Elvin-Poole, Enrique Gaztanaga, I. Harrison, M. March, Markus Rau, S. Pandey, J. Muir, S. Allam, Robert A. Gruendl, Peter Melchior, Ofer Lahav, A. A. Plazas Malagón, J. Carretero, Tamara M. Davis, E. Bertin, Michael Schubnell, B. Flaugher, V. Scarpine, Maria E. S. Pereira, Felipe Menanteau, E. M. Huff, P. Lemos, Michel Aguena, M. Carrasco Kind, W. C. Wester, Michael Troxel, A. Choi, Robert Morgan, Youngsoo Park, J. Gschwend, K. Honscheid, Gary Bernstein, I. Sevilla-Noarbe, R. L. C. Ogando, R. Cawthon, M. Soares-Santos, Ramon Miquel, A. Carnero Rosell, Christopher J. Conselice, D. L. Hollowood, N. Weaverdyck, Peter Doel, Marco Raveri, K. D. Eckert, T. N. Varga, H. T. Diehl, David Bacon, Niall MacCrann, S. Serrano, Paul Martini, A. Campos, Agnès Ferté, David J. Brooks, J. Prat, S. Everett, Marcos Lima, M. Smith, Daniel Gruen, Jennifer L. Marshall, Dragan Huterer, D. W. Gerdes, J. Annis, Joe Zuntz, F. Paz-Chinchón, Andrew R. Liddle, Jochen Weller, F. J. Castander, C. Doux, Chun-Hao To, E. J. Sanchez, Jonathan Blazek, L. F. Secco, Scott Dodelson, Santiago Avila, Chihway Chang, S. Desai, UAM. Departamento de Física Teórica, Lemos, P., Raveri, M., Campos, A., Park, Y., Chang, C., Weaverdyck, N., Huterer, D., Liddle, A. R., Blazek, J., Cawthon, R., Choi, A., Derose, J., Dodelson, S., Doux, C., Gatti, M., Gruen, D., Harrison, I., Krause, E., Lahav, O., Maccrann, N., Muir, J., Prat, J., Rau, M. M., Rollins, R. P., Samuroff, S., Zuntz, J., Aguena, M., Allam, S., Annis, J., Avila, S., Bacon, D., Bernstein, G. M., Bertin, E., Brooks, D., Burke, D. L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Castander, F. J., Conselice, C., Costanzi, M., Crocce, M., Pereira, M. E. S., Davis, T. M., De Vicente, J., Desai, S., Diehl, H. T., Doel, P., Eckert, K., Eifler, T. F., Elvin-Poole, J., Everett, S., Evrard, A. E., Ferrero, I., Ferté, A., Flaugher, B., Fosalba, P., Frieman, J., García-Bellido, J., Gaztanaga, E., Gerdes, D. W., Giannantonio, T., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hartley, W. G., Hinton, S. R., Hollowood, D. L., Honscheid, K., Hoyle, B., Huff, E. M., James, D. J., Jarvis, M., Lima, M., Maia, M. A. G., March, M., Marshall, J. L., Martini, P., Melchior, P., Menanteau, F., Miquel, R., Mohr, J. J., Morgan, R., Myles, J., Ogando, R. L. C., Palmese, A., Pandey, S., Paz-Chinchón, F., Plazas Malagón, A. A., Rodriguez-Monroy, M., Roodman, A., Sanchez, E., Scarpine, V., Schubnell, M., Secco, L. F., Serrano, S., Sevilla-Noarbe, I., Smith, M., Soares-Santos, M., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., To, C., Troxel, M. A., Varga, T. N., Weller, J., Wester, W., Des, Collaboration, National Science Foundation (US), Ministerio de Ciencia, Innovación y Universidades (España), European Commission, Generalitat de Catalunya, Fermilab, Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), and DES
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Statistical [Methods] ,Physics beyond the Standard Model ,Cosmic microwave background ,FOS: Physical sciences ,Lambda-CDM model ,robustness ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Cosmology: Observations ,Observations [Cosmology] ,Cosmological parameters ,Cosmology: observations ,Methods: statistical ,Methods: Statistical ,Bayes' theorem ,symbols.namesake ,statistical, cosmological parameters, cosmology: observations [methods] ,0103 physical sciences ,ST/T000473/1 ,Statistical physics ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Planck ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010303 astronomy & astrophysics ,STFC ,Physics ,inference ,cosmological constant ,010308 nuclear & particles physics ,Tension (physics) ,methods: statistical, cosmological parameters, cosmology: observations ,Estimator ,RCUK ,Física ,Astronomy and Astrophysics ,ST/R000476/1 ,universe ,Astronomía ,Space and Planetary Science ,symbols ,Dark energy ,Cosmological Parameters ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Lemos, P. et al., Quantifying tensions – inconsistencies amongst measurements of cosmological parameters by different experiments – has emerged as a crucial part of modern cosmological data analysis. Statistically significant tensions between two experiments or cosmological probes may indicate new physics extending beyond the standard cosmological model and need to be promptly identified. We apply several tension estimators proposed in the literature to the dark energy survey (DES) large-scale structure measurement and Planck cosmic microwave background data. We first evaluate the responsiveness of these metrics to an input tension artificially introduced between the two, using synthetic DES data. We then apply the metrics to the comparison of Planck and actual DES Year 1 data. We find that the parameter differences, Eigentension, and Suspiciousness metrics all yield similar results on both simulated and real data, while the Bayes ratio is inconsistent with the rest due to its dependence on the prior volume. Using these metrics, we calculate the tension between DES Year 1 3 × 2pt and Planck, finding the surveys to be in ∼2.3σ tension under the ΔCDM paradigm. This suite of metrics provides a toolset for robustly testing tensions in the DES Year 3 data and beyond., The DES data management system is supported by the National Science Foundation under grant numbers AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by Ministerio de Ciencia e Innovación (MICINN) under grants ESP2017-89838, PGC2018-094773, PGC2018-102021, SEV-2016-0588, SEV-2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the Centres de Recerca de Catalunya (CERCA) program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478. We acknowledge support from the Brazilian Instituto Nacional de Ciência e Tecnologia (INCT) do e-Universo (CNPq grant 465376/2014-2). This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
- Published
- 2021
19. Producing a BOSS CMASS sample with DES imaging
- Author
-
A. A. Plazas, David J. James, Pablo Fosalba, Devon L. Hollowood, E. Bertin, Antonella Palmese, C. Davis, S. Serrano, A. Carnero Rosell, G. Gutierrez, V. Scarpine, J. Gschwend, Shantanu Desai, Mathew Smith, Kyler Kuehn, J. Annis, Daniel Thomas, David Brooks, M. E. C. Swanson, R. L. C. Ogando, Jochen Weller, Juan Garcia-Bellido, Tesla E. Jeltema, Christopher M. Hirata, Jennifer L. Marshall, Marcelle Soares-Santos, Ashley J. Ross, Jack Elvin-Poole, Felipe Menanteau, Peter Melchior, M. Carrasco Kind, Gregory Tarle, Michael Schubnell, Paul Martini, Michael Troxel, Marcos Lima, M. A. G. Maia, A. Choi, E. J. Sanchez, I. Sevilla-Noarbe, K. Honscheid, E. M. Huff, R. Cawthon, Niall MacCrann, Santiago Avila, L. N. da Costa, J. Carretero, Daniel Gruen, Joe Zuntz, J. De Vicente, E. Suchyta, D. W. Gerdes, B. Flaugher, Enrique Gaztanaga, Ramon Miquel, Robert A. Gruendl, Christopher J. Miller, Tim Eifler, Flavia Sobreira, Seungwon Lee, Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), and DES
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,FOS: Physical sciences ,Photometric [Techniques] ,Library science ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Max planck institute ,techniques: photometric ,0103 physical sciences ,media_common.cataloged_instance ,European union ,Astronomy observatory ,010303 astronomy & astrophysics ,STFC ,Astrophysics::Galaxy Astrophysics ,media_common ,Physics ,010308 nuclear & particles physics ,European research ,RCUK ,Astronomy and Astrophysics ,galaxies: general ,methods: data analysis ,Data analysis [Methods] ,Space and Planetary Science ,General [Galaxies] ,Fundamental physics ,astro-ph.CO ,Christian ministry ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,National laboratory ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present a sample of galaxies with the Dark Energy Survey (DES) photometry that replicates the properties of the BOSS CMASS sample. The CMASS galaxy sample has been well characterized by the Sloan Digital Sky Survey (SDSS) collaboration and was used to obtain the most powerful redshift-space galaxy clustering measurements to date. A joint analysis of redshift-space distortions (such as those probed by CMASS from SDSS) and a galaxy-galaxy lensing measurement for an equivalent sample from DES can provide powerful cosmological constraints. Unfortunately, the DES and SDSS-BOSS footprints have only minimal overlap, primarily on the celestial equator near the SDSS Stripe 82 region. Using this overlap, we build a robust Bayesian model to select CMASS-like galaxies in the remainder of the DES footprint. The newly defined DES-CMASS (DMASS) sample consists of 117,293 effective galaxies covering $1,244 {\rm deg}^2$. Through various validation tests, we show that the DMASS sample selected by this model matches well with the BOSS CMASS sample, specifically in the South Galactic cap (SGC) region that includes Stripe 82. Combining measurements of the angular correlation function and the clustering-z distribution of DMASS, we constrain the difference in mean galaxy bias and mean redshift between the BOSS CMASS and DMASS samples to be $\Delta b = 0.010^{+0.045}_{-0.052}$ and $\Delta z = \left( 3.46^{+5.48}_{-5.55} \right) \times 10^{-3}$ for the SGC portion of CMASS, and $\Delta b = 0.044^{+0.044}_{-0.043} $ and $\Delta z= ( 3.51^{+4.93}_{-5.91}) \times 10^{-3}$ for the full CMASS sample. These values indicate that the mean bias of galaxies and mean redshift in the DMASS sample is consistent with both CMASS samples within $1\sigma$., Comment: 22 pages, 17 figures
- Published
- 2019
20. Modelling baryonic physics in future weak lensing surveys
- Author
-
Tim Eifler, Hung Jin Huang, Rachel Mandelbaum, and Scott Dodelson
- Subjects
Baryon ,Physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,COSMIC cancer database ,Space and Planetary Science ,FOS: Physical sciences ,Astronomy ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Space (mathematics) ,Energy (signal processing) ,Weak gravitational lensing ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Modifications of the matter power spectrum due to baryonic physics are one of the major theoretical uncertainties in cosmological weak lensing measurements. Developing robust mitigation schemes for this source of systematic uncertainty increases the robustness of cosmological constraints, and may increase their precision if they enable the use of information from smaller scales. Here we explore the performance of two mitigation schemes for baryonic effects in weak lensing cosmic shear: the PCA method and the halo-model approach in \textsc{HMcode}. We construct mock tomographic shear power spectra from four hydrodynamical simulations, and run simulated likelihood analyses with \textsc{CosmoLike} assuming LSST-like survey statistics. With an angular scale cut of $\ell_{\rm max} 10\ h^{-1}\mathrm{Mpc}$. We investigate variants of the PCA method and improve the bias mitigation through PCA by accounting for the noise properties in the data via Cholesky decomposition of the covariance matrix. Our improved PCA method allows us to retain more statistical constraining power while effectively mitigating baryonic uncertainties even for a broad range of baryonic physics scenarios., 29 pages, 19 figures, accepted to MNRAS
- Published
- 2019
21. First cosmological results using Type Ia supernovae from the Dark Energy Survey: measurement of the Hubble constant
- Author
-
F. J. Castander, Geraint F. Lewis, W. G. Hartley, Alex Drlica-Wagner, T. M. C. Abbott, C. B. D'Andrea, Tesla E. Jeltema, Dragan Huterer, E. J. Sanchez, D. A. Finley, M. Carrasco Kind, Tenglin Li, Santiago Avila, Carlos E. Cunha, Robert C. Nichol, N. E. Sommer, Vinu Vikram, J. Carretero, Santiago González-Gaitán, R. H. Schindler, K. Bechtol, Tamara M. Davis, E. Swann, D. L. Burke, A. Carnero Rosell, Samuel Hinton, Ben Hoyle, J. Annis, Edward Macaulay, David Brooks, M. E. C. Swanson, Peter Nugent, Martin Crocce, G. Gutierrez, Daniel Thomas, Mark Sullivan, Joshua A. Frieman, P. Wiseman, E. Suchyta, August E. Evrard, Antonella Palmese, Ryan J. Foley, N. Kuropatkin, Daniel Scolnic, A. G. Kim, V. Scarpine, S. Allam, Robert A. Gruendl, E. Kasai, R. C. Thomas, M. A. G. Maia, Mathew Smith, C. Lidman, Peter de Nully Brown, Alistair R. Walker, Lluís Galbany, D. Brout, Jacobo Asorey, S. Serrano, Marcelle Soares-Santos, Jennifer L. Marshall, Enrique Gaztanaga, L. N. da Costa, Rob Sharp, M. Sako, Brad E. Tucker, J. Calcino, David J. James, Daniela Carollo, Bruce A. Bassett, D. L. Hollowood, Anais Möller, A. A. Plazas, Pablo Fosalba, Bonnie Zhang, Richard Kessler, Bhuvnesh Jain, J. De Vicente, K. Honscheid, S. A. Uddin, Karl Glazebrook, Marcos Lima, Flavia Sobreira, M. S. Schubnell, Ofer Lahav, I. Sevilla-Noarbe, J. Lasker, Juan Garcia-Bellido, A. Roodman, Juan Estrada, B. Flaugher, H. T. Diehl, C. Davis, Kyler Kuehn, Daniel Gruen, David Bacon, Alexei V. Filippenko, J. Gschwend, Gregory Tarle, P. Martini, Tim Eifler, Elisabeth Krause, Ramon Miquel, P. Doel, Thomas E. Collett, Huan Lin, J. K. Hoormann, A. K. Romer, and Yen-Chen Pan
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Cepheid variable ,media_common.quotation_subject ,Cosmic microwave background ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,01 natural sciences ,symbols.namesake ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,QC ,STFC ,media_common ,Physics ,010308 nuclear & particles physics ,Cosmic distance ladder ,RCUK ,SATÉLITES ARTIFICIAIS ,Astronomy and Astrophysics ,Universe ,Redshift ,Space and Planetary Science ,astro-ph.CO ,Dark energy ,symbols ,ST/N000668/1 ,Baryon acoustic oscillations ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Hubble's law - Abstract
We present an improved measurement of the Hubble constant (H_0) using the 'inverse distance ladder' method, which adds the information from 207 Type Ia supernovae (SNe Ia) from the Dark Energy Survey (DES) at redshift 0.018 < z < 0.85 to existing distance measurements of 122 low redshift (z < 0.07) SNe Ia (Low-z) and measurements of Baryon Acoustic Oscillations (BAOs). Whereas traditional measurements of H_0 with SNe Ia use a distance ladder of parallax and Cepheid variable stars, the inverse distance ladder relies on absolute distance measurements from the BAOs to calibrate the intrinsic magnitude of the SNe Ia. We find H_0 = 67.8 +/- 1.3 km s-1 Mpc-1 (statistical and systematic uncertainties, 68% confidence). Our measurement makes minimal assumptions about the underlying cosmological model, and our analysis was blinded to reduce confirmation bias. We examine possible systematic uncertainties and all are below the statistical uncertainties. Our H_0 value is consistent with estimates derived from the Cosmic Microwave Background assuming a LCDM universe (Planck Collaboration et al. 2018)., 15 pages, 5 figures, updated to match accepted version
- Published
- 2019
22. Dark Energy Survey Year 1 Results: Cosmological Constraints from Cluster Abundances, Weak Lensing, and Galaxy Correlations
- Author
-
G. Gutierrez, David J. Brooks, Robert Morgan, Erin Sheldon, J. Prat, Joe Zuntz, S. Samuroff, Jack Elvin-Poole, Matthew R. Becker, M. Carrasco Kind, M. E. C. Swanson, Alex Drlica-Wagner, J. Carretero, Dragan Huterer, V. Scarpine, Ashley J. Ross, Tamara M. Davis, E. Bertin, Xiao Fang, Douglas L. Tucker, Kyler Kuehn, Basilio X. Santiago, T. N. Varga, M. Gatti, J. Annis, A. Carnero Rosell, Youngsoo Park, D. L. Burke, W. C. Wester, Robert A. Gruendl, R. Cawthon, Marcos Lima, I. Ferrero, Matt J. Jarvis, P. Vielzeuf, Yanxi Zhang, Tim Eifler, M. Costanzi, W. G. Hartley, Arya Farahi, Josh Frieman, J. P. Dietrich, Juan Garcia-Bellido, Eduardo Rozo, Oliver Friedrich, I. Sevilla-Noarbe, T. McClintock, J. Muir, N. Kuropatkin, J. DeRose, E. Suchyta, August E. Evrard, Martin Crocce, R. D. Wilkinson, Ben Hoyle, Jochen Weller, L. N. da Costa, Tesla E. Jeltema, G. Tarle, Antonella Palmese, M. A. G. Maia, Michael Troxel, T. M. C. Abbott, Chun-Hao To, E. J. Sanchez, J. Myles, David J. James, Enrique Gaztanaga, Jonathan Blazek, Christopher J. Conselice, Markus Rau, Sarah Bridle, Santiago Avila, Chihway Chang, P. Fosalba, Carlos Solans Sanchez, Michel Aguena, Sunayana Bhargava, A. K. Romer, S. Desai, B. Flaugher, Sebastian Bocquet, Daniel Thomas, H. T. Diehl, Ramon Miquel, D. L. Hollowood, Niall MacCrann, S. Serrano, C. Davis, M. Smith, A. A. Plazas, Gary Bernstein, Hao-Yi Wu, Daniel Gruen, A. Porredon, V. Miranda, Maria E. S. Pereira, Elisabeth Krause, S. Everett, F. Paz-Chinchón, Jennifer L. Marshall, Eli S. Rykoff, Risa H. Wechsler, Richard G. Kron, A. Roodman, Tommaso Giannantonio, A. Choi, K. Honscheid, Alexandra Amon, Felipe Menanteau, Samuel Hinton, Department of Energy (US), Ministerio de Economía y Competitividad (España), Ministerio de Ciencia, Innovación y Universidades (España), German Research Foundation, European Commission, To, C., Krause, E., Rozo, E., Wu, H., Gruen, D., Wechsler, R. H., Eifler, T. F., Rykoff, E. S., Costanzi, M., Becker, M. R., Bernstein, G. M., Blazek, J., Bocquet, S., Bridle, S. L., Cawthon, R., Choi, A., Crocce, M., Davis, C., Derose, J., Drlica-Wagner, A., Elvin-Poole, J., Fang, X., Farahi, A., Friedrich, O., Gatti, M., Gaztanaga, E., Giannantonio, T., Hartley, W. G., Hoyle, B., Jarvis, M., Maccrann, N., Mcclintock, T., Miranda, V., Pereira, M. E. S., Park, Y., Porredon, A., Prat, J., Rau, M. M., Ross, A. J., Samuroff, S., Sánchez, C., Sevilla-Noarbe, I., Sheldon, E., Troxel, M. A., Varga, T. N., Vielzeuf, P., Zhang, Y., Zuntz, J., Abbott, T. M. C., Aguena, M., Annis, J., Avila, S., Bertin, E., Bhargava, S., Brooks, D., Burke, D. L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Chang, C., Conselice, C., da Costa, L. N., Davis, T. M., Desai, S., Diehl, H. T., Dietrich, J. P., Everett, S., Evrard, A. E., Ferrero, I., Flaugher, B., Fosalba, P., Frieman, J., García-Bellido, J., Gruendl, R. A., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Huterer, D., James, D. J., Jeltema, T., Kron, R., Kuehn, K., Kuropatkin, N., Lima, M., Maia, M. A. G., Marshall, J. L., Menanteau, F., Miquel, R., Morgan, R., Muir, J., Myles, J., Palmese, A., Paz-Chinchón, F., Plazas, A. A., Romer, A. K., Roodman, A., Sanchez, E., Santiago, B., Scarpine, V., Serrano, S., Smith, M., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., Tucker, D. L., Weller, J., Wester, W., Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), DES, and UAM. Departamento de Física Teórica
- Subjects
SDSS ,Software_OPERATINGSYSTEMS ,ComputingMethodologies_SIMULATIONANDMODELING ,Cosmological parameters ,General Physics and Astronomy ,Astrophysics ,SPT ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Data_CODINGANDINFORMATIONTHEORY ,des ,Gravitation and Astrophysics ,01 natural sciences ,7. Clean energy ,Cosmology ,scale ,TRACER ,evolution ,0103 physical sciences ,Dark energy ,Hardware_INTEGRATEDCIRCUITS ,Dark matter ,010306 general physics ,Cluster analysis ,Scaling ,Weak gravitational lensing ,STFC ,Physics ,model ,COSMIC cancer database ,RCUK ,Física ,spt ,Mass Calibration ,ComputerSystemsOrganization_PROCESSORARCHITECTURES ,Galaxy ,Scale ,red galaxies ,13. Climate action ,Cosmic Shear ,mass calibration ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,sdss ,cosmic shear ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
To, C. et al. (DES Collaboration), We present the first joint analysis of cluster abundances and auto or cross-correlations of three cosmic tracer fields: galaxy density, weak gravitational lensing shear, and cluster density split by optical richness. From a joint analysis (4×2pt+N) of cluster abundances, three cluster cross-correlations, and the auto correlations of the galaxy density measured from the first year data of the Dark Energy Survey, we obtain ωm=0.305-0.038+0.055 and σ8=0.783-0.054+0.064. This result is consistent with constraints from the DES-Y1 galaxy clustering and weak lensing two-point correlation functions for the flat νΛCDM model. Consequently, we combine cluster abundances and all two-point correlations from across all three cosmic tracer fields (6×2pt+N) and find improved constraints on cosmological parameters as well as on the cluster observable-mass scaling relation. This analysis is an important advance in both optical cluster cosmology and multiprobe analyses of upcoming wide imaging surveys., This Letter has gone through internal review by the DES Collaboration. This work was supported in part by the U.S. Department of Energy contract to SLAC National Accelerator Laboratory, under Contract No. DE-AC02- 76SF00515 (C. H., D. G., R. W.) including a Panofsky Fellowship awarded to D. G. E. K. is supported by the Department of Energy Grant No. DE-SC0020247. E. R. is supported by DOE Grants No. DE-SC0015975 and No. DE-SC0009913, and by NSF Grant No. 2009401. E. R. also acknowledges funding from the Cottrell Scholar program of the Research Corporation for Science Advancement. H. W. is supported by NSF Grant No. AST-1516997. Some of the computing for this project was performed on the Sherlock cluster at Stanford. We would like to thank KIPAC, Stanford University, and the Stanford Research Computing Center for providing computational resources and support that contributed to these research results. Funding for the DES Projects has been provided by the DOE and NSF(USA), MEC/MICINN/ MINECO(Spain), STFC(UK), HEFCE(UK). NCSA (UIUC), KICP(U. Chicago), CCAPP(Ohio State), MIFPA(Texas A&M), CNPQ, FAPERJ, FINEP (Brazil), DFG(Germany), and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne Lab, UC Santa Cruz, University of Cambridge, CIEMAT-Madrid, University of Chicago, University College London, DES-Brazil Consortium, University of Edinburgh, ETH Zürich, Fermilab, University of Illinois, ICE (IEEC-CSIC), IFAE Barcelona, Lawrence Berkeley Lab, LMU München and the associated Excellence Cluster Universe, University of Michigan, NFS’s NOIRLab, University of Nottingham, Ohio State University, University of Pennsylvania, University of Portsmouth, SLAC National Lab, Stanford University, University of Sussex, Texas A&M University, and the OzDES Membership Consortium. Based in part on observations at Cerro Tololo Inter-American Observatory at NSFs NOIRLab (NOIRLab Prop. ID 2012B-0001; PI: J. Frieman), which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The DES Data Management System is supported by the NSF under Grants No. AST-1138766 and No. AST-1536171. The DES participants from Spanish institutions are partially supported by MICINN under Grants ESP2017-89838, PGC2018-094773, PGC2018- 102021, SEV-2016-0588, SEV-2016-0597, and MDM2015-0509, some of which include ERDF funds from the European Union. I. F. A. E. is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013) including ERC Grant Agreements 240672, 291329, and 306478. We acknowledge support from the Brazilian Instituto Nacional de Ciência e Tecnologia (INCT) do e-Universo (CNPq Grant No. 465376/2014-2). This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
- Published
- 2021
23. Combining information from multiple cosmological surveys: inference and modeling challenges
- Author
-
David Alonso, Erminia Calabrese, Tim Eifler, Giulio Fabbian, Simone Ferraro, Eric Gawiser, J. Hill, Elisabeth Krause, Mathew Madhavacheril, Anže Slosar, and David Spergel
- Published
- 2021
24. OzDES Reverberation Mapping Program: Lag recovery reliability for 6-year CIV analysis
- Author
-
G. Tarle, Maria E. S. Pereira, E. Suchyta, R. D. Wilkinson, Daniela Carollo, I. Ferrero, A. Carnero Rosell, Samuel Hinton, J. Gschwend, Tim Eifler, Kyler Kuehn, M. E. C. Swanson, G. Gutierrez, Juan Garcia-Bellido, J. Carretero, Tamara M. Davis, Rob Sharp, Sunayana Bhargava, David J. Brooks, Antonella Palmese, M. A. G. Maia, M. Smith, D. L. Hollowood, Daniel Gruen, J. K. Hoormann, C. Lidman, B. E. Tucker, S. Serrano, Jennifer L. Marshall, A. K. Romer, Daniel Scolnic, Paul Martini, Josh Frieman, Enrique Gaztanaga, Anais Möller, E. Bertin, S. A. Uddin, D. W. Gerdes, J. Calcino, David J. James, A. A. Plazas, H. T. Diehl, David Bacon, A. Penton, A. G. Kim, Pablo Fosalba, M. Carrasco Kind, Ramon Miquel, M. Costanzi, K. Honscheid, J. Annis, J. De Vicente, W. C. Wester, S. Everett, S. Allam, Robert A. Gruendl, F. Paz-Chinchón, Felipe Menanteau, V. Scarpine, U. Malik, Chun-Hao To, Michel Aguena, E. J. Sanchez, Jacobo Asorey, N. Kuropatkin, Zhefu Yu, T. N. Varga, L. N. da Costa, Robert Morgan, Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique de Clermont (LPC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA), DES, Penton, A, Malik, U, Davis, T M, Martini, P, Yu, Z, Sharp, R, Lidman, C, Tucker, B E, Hoormann, J K, Aguena, M, Allam, S, Annis, J, Asorey, J, Bacon, D, Bertin, E, Bhargava, S, Brooks, D, Calcino, J, Carnero , Rosell, A, Carollo, D, Carrasco , Kind, M, Carretero, J, Costanzi, M, da , Costa, L N, Pereira, M E S, De , Vicente, J, Diehl, H T, Eifler, T F, Everett, S, Ferrero, I, Fosalba, P, Frieman, J, García-Bellido, J, Gaztanaga, E, Gerdes, D W, Gruen, D, Gruendl, R A, Gschwend, J, Gutierrez, G, Hinton, S R, Hollowood, D L, Honscheid, K, James, D J, Kim, A G, Kuehn, K, Kuropatkin, N, Maia, M A G, Marshall, J L, Menanteau, F, Miquel, R, Morgan, R, Möller, A, Palmese, A, Paz-Chinchón, F, Plazas, A A, Romer, A K, Sanchez, E, Scarpine, V, Scolnic, D, Serrano, S, Smith, M, Suchyta, E, Swanson, M E C, Tarle, G, To, C, Uddin, S A, Varga, T N, Wester, W, Wilkinson, R D, Lewis, G, National Science Foundation (US), Ministerio de Ciencia e Innovación (España), Generalitat de Catalunya, European Commission, Instituto Nacional de Ciência e Tecnologia (Brasil), and UAM. Departamento de Física Teórica
- Subjects
galaxies: active ,quasars: emission lines ,quasars: general ,Astrophysics - Astrophysics of Galaxies ,Lag ,FOS: Physical sciences ,01 natural sciences ,emission lines [Quasars] ,statistical analysis ,(Galaxies:) Quasars: Emission Lines ,0103 physical sciences ,quasar ,silver ,AGN ,010303 astronomy & astrophysics ,Reliability (statistics) ,Physics ,[PHYS]Physics [physics] ,general [quasars] ,010308 nuclear & particles physics ,) Quasars: Emission Lines [(Galaxies] ,Física ,Astronomy and Astrophysics ,gold ,(Galaxies:) Quasars: Supermassive Black Holes ,Nuclei ,Reliability engineering ,emission line [quasars] ,Space and Planetary Science ,quality ,Astrophysics of Galaxies (astro-ph.GA) ,active [galaxies] ,slope ,Reverberation mapping ,dispersion ,galaxy ,statistical ,) Quasars: Supermassive Black Holes [(Galaxies] - Abstract
Penton, A. et al (DES Collaboration), We present the statistical methods that have been developed to analyse the OzDES reverberation mapping sample. To perform this statistical analysis we have created a suite of customizable simulations that mimic the characteristics of each source in the OzDES sample. These characteristics include: the variability in the photometric and spectroscopic light curves, the measurement uncertainties, and the observational cadence. By simulating the sources in the OzDES sample that contain the C iv emission line, we developed a set of criteria that rank the reliability of a recovered time-lag depending on the agreement between different recovery methods, the magnitude of the uncertainties, and the rate at which false positives were found in the simulations. These criteria were applied to simulated light curves and these results used to estimate the quality of the resulting Radius-Luminosity relation. We grade the results using three quality levels (gold, silver, and bronze). The input slope of the R-L relation was recovered within 1σ for each of the three quality samples, with the gold standard having the lowest dispersion with a recovered a R-L relation slope of 0.454 ± 0.016 with an input slope of 0.47. Future work will apply these methods to the entire OzDES sample of 771 AGN., The DES data management system is supported by the National Science Foundation under Grant Numbers AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MICINN under grants ESP2017-89838, PGC2018-094773, PGC2018-102021, SEV-2016-0588, SEV-2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478. We acknowledge support from the Brazilian Instituto Nacional de Ciência e Tecnologia (INCT) do e-Universo (CNPq grant 465376/2014-2).
- Published
- 2021
25. A Deeper Look at DES Dwarf Galaxy Candidates: Grus I and Indus II
- Author
-
Denija Crnojevic, J. Gschwend, R. D. Wilkinson, Shantanu Desai, E. Suchyta, F. Paz-Chinchón, J. Carretero, Michael Schubnell, A. A. Plazas, Joshua D. Simon, M. Smith, A. R. Walker, K. Honscheid, Peter Doel, C. E. Martínez-Vázquez, Louis E. Strigari, S. A. Cantu, H. T. Diehl, J. De Vicente, Juan Garcia-Bellido, S. Allam, Robert A. Gruendl, Josh Frieman, David James, Felipe Menanteau, Jennifer L. Marshall, M. Costanzi, Gregory Tarle, Adam Amara, M. E. C. Swanson, M. A. G. Maia, Marcelle Soares-Santos, Michel Aguena, Santiago Serrano, I. Sevilla-Noarbe, Tim Eifler, A. Carnero Rosell, Ramon Miquel, V. Scarpine, Antonella Palmese, Alex Drlica-Wagner, Basilio X. Santiago, K. M. Stringer, Samuel Hinton, L. N. da Costa, G. Gutierrez, S. Everett, D. Gruen, D. L. Hollowood, Enrique Gaztanaga, Andrew B. Pace, M. Carrasco Kind, D. H. Brooks, E. J. Sanchez, Santiago Avila, Kyler Kuehn, Keith Bechtol, Cantu, Sarah A., Pace, Andrew B., Marshall, Jennifer, Strigari, Louis E., Crnojevic, Denija, Simon, Joshua D., Drlica-Wagner, A., Bechtol, K., Martínez-Vázquez, Clara E., Santiago, B., Amara, A., Stringer, K. M., Diehl, H. T., Aguena, M., Allam, S., Avila, S., Brooks, D., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Costanzi, M., Da Costa, L. N., De Vicente, J., Desai, S., Doel, P., Eifler, T. F., Everett, S., Frieman, J., García-Bellido, J., Gaztanaga, E., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Kuehn, K., Maia, M. A. G., Menanteau, F., Miquel, R., Palmese, A., Paz-Chinchón, F., Plazas, A. A., Sanchez, E., Scarpine, V., Schubnell, M., Serrano, S., Sevilla-Noarbe, I., Smith, M., Soares-Santos, M., Suchyta, E., Swanson, M. E. C., Tarle, G., Walker, A. R., Wilkinson, R. D., and Des, Collaboration
- Subjects
Stellar population ,Galaxy propertie ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Galaxy properties ,Bayesian statistics ,01 natural sciences ,Photometry (optics) ,Photometry ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,Dwarf galaxies ,Astrophysics::Galaxy Astrophysics ,Dwarf galaxy ,Physics ,010308 nuclear & particles physics ,Grus (geology) ,Astronomy data analysi ,Astronomy and Astrophysics ,Horizontal branch ,Astronomy data analysis ,416 ,1858 ,1234 ,615 ,1900 ,Astrophysics - Astrophysics of Galaxies ,Bayesian statistic ,Stars ,Dwarf galaxie ,Space and Planetary Science ,Globular cluster ,Astrophysics of Galaxies (astro-ph.GA) ,Magnitude (astronomy) ,Astrophysics::Earth and Planetary Astrophysics - Abstract
We present deep $g$- and $r$-band Magellan/Megacam photometry of two dwarf galaxy candidates discovered in the Dark Energy Survey (DES), Grus I and Indus II (DES J2038-4609). For the case of Grus I, we resolved the main sequence turn-off (MSTO) and $\sim 2$ mags below it. The MSTO can be seen at $g_0\sim 24$ with a photometric uncertainty of $0.03$ mag. We show Grus I to be consistent with an old, metal-poor ($\sim 13.3$ Gyr, [Fe/H]$\sim-1.9$) dwarf galaxy. We derive updated distance and structural parameters for Grus I using this deep, uniform, wide-field data set. We find an azimuthally averaged half-light radius more than two times larger ($\sim 151^{+21}_{-31}$ pc; $\sim 4.^{\prime} 16^{+0.54}_{-0.74}$) and an absolute $V$-band magnitude $\sim-4.1$ that is $\sim 1$ magnitude brighter than previous studies. We obtain updated distance, ellipticity, and centroid parameters which are in agreement with other studies within uncertainties. Although our photometry of Indus II is $\sim 2-3$ magnitudes deeper than the DES Y1 Public release, we find no coherent stellar population at its reported location. The original detection was located in an incomplete region of sky in the DES Y2Q1 data set and was flagged due to potential blue horizontal branch member stars. The best fit isochrone parameters are physically inconsistent with both dwarf galaxies and globular clusters. We conclude that Indus II is likely a false-positive, flagged due to a chance alignment of stars along the line of sight., 16 pages, 8 figures; submitted to ApJ
- Published
- 2021
26. Dark energy survey year 1 results: The lensing imprint of cosmic voids on the cosmic microwave background
- Author
-
Marcos Lima, David J. Brooks, Ofer Lahav, D. L. Hollowood, S. Serrano, J. De Vicente, Dragan Huterer, J. Carretero, Seshadri Nadathur, A. A. Plazas, Peter Melchior, Felipe Menanteau, J. Annis, Daniel Thomas, Joe Zuntz, L. Whiteway, J. Gschwend, M. Costanzi, M. March, P. Vielzeuf, Eric J. Baxter, M. Smith, Josh Frieman, E. Suchyta, Jennifer L. Marshall, Carlos Solans Sanchez, A. Carnero Rosell, Tim Eifler, Daniel Gruen, Nico Hamaus, G. Tarle, A. Kovács, B. Flaugher, S. Everett, D. W. Gerdes, K. Honscheid, W. G. Hartley, Santiago Avila, Antonella Palmese, Ramon Miquel, F. Paz-Chinchón, M. A. G. Maia, Jochen Weller, Juan Garcia-Bellido, V. Scarpine, U. Demirbozan, Peter Doel, T. M. C. Abbott, H. T. Diehl, E. J. Sanchez, G. Gutierrez, David J. James, Pablo Fosalba, G. Pollina, Shantanu Desai, I. Sevilla-Noarbe, N. Kuropatkin, L. N. da Costa, Enrique Gaztanaga, R. Cawthon, M. Carrasco Kind, Kyler Kuehn, D. L. Burke, S. Allam, Robert A. Gruendl, Ministerio de Ciencia e Innovación (España), European Commission, UAM. Departamento de Física Teórica, Vielzeuf, P, Kovács, A, Demirbozan, U, Fosalba, P, Baxter, E, Hamaus, N, Huterer, D, Miquel, R, Nadathur, S, Pollina, G, Sánchez, C, Whiteway, L, Abbott, T M C, Allam, S, Annis, J, Avila, S, Brooks, D, Burke, D L, Rosell, A Carnero, Kind, M Carrasco, Carretero, J, Cawthon, R, Costanzi, M, da Costa, L N, De Vicente, J, Desai, S, Diehl, H T, Doel, P, Eifler, T F, Everett, S, Flaugher, B, Frieman, J, García-Bellido, J, Gaztanaga, E, Gerdes, D W, Gruen, D, Gruendl, R A, Gschwend, J, Gutierrez, G, Hartley, W G, Hollowood, D L, Honscheid, K, James, D J, Kuehn, K, Kuropatkin, N, Lahav, O, Lima, M, Maia, M A G, March, M, Marshall, J L, Melchior, P, Menanteau, F, Palmese, A, Paz-Chinchón, F, Plazas, A A, Sanchez, E, Scarpine, V, Serrano, S, Sevilla-Noarbe, I, Smith, M, Suchyta, E, Tarle, G, Thomas, D, Weller, J, and Zuntz, J
- Subjects
Void (astronomy) ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Large-scale structure of Universe ,Cosmic microwave background ,Cosmic background radiation ,FOS: Physical sciences ,Astrophysics ,cosmic background radiation ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,7. Clean energy ,symbols.namesake ,TRACER ,0103 physical sciences ,LENTES GRAVITACIONAIS ,Planck ,010303 astronomy & astrophysics ,STFC ,Physics ,COSMIC cancer database ,010308 nuclear & particles physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,Física ,RCUK ,Astronomy and Astrophysics ,Galaxy ,13. Climate action ,Space and Planetary Science ,Dark energy ,symbols ,large-scale structure of Universe ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Cosmic voids gravitationally lens the cosmic microwave background (CMB) radiation, resulting in a distinct imprint on degree scales. We use the simulated CMB lensing convergence map from the Marenostrum Institut de Ciencias de l’Espai (MICE) N-body simulation to calibrate our detection strategy for a given void definition and galaxy tracer density. We then identify cosmic voids in Dark Energy Survey (DES) Year 1 data and stack the Planck 2015 lensing convergence map on their locations, probing the consistency of simulated and observed void lensing signals. When fixing the shape of the stacked convergence profile to that calibrated from simulations, we find imprints at the 3σ significance level for various analysis choices. The best measurement strategies based on the MICE calibration process yield S/N ≈ 4 for DES Y1, and the best-fitting amplitude recovered from the data is consistent with expectations from MICE (A ≈ 1). Given these results as well as the agreement between them and N-body simulations, we conclude that the previously reported excess integrated Sachs–Wolfe (ISW) signal associated with cosmic voids in DES Y1 has no counterpart in the Planck CMB lensing map., This work has made use of CosmoHub (see Carretero et al. 2017). CosmoHub has been developed by the Port d’Informacio Cient ´ ´ıfica (PIC), maintained through a collaboration of the Institut de F´ısica d’Altes Energies (IFAE) and the Centro de Investigaciones Energeticas, Medioambientales y Tecnol ´ ogicas (CIEMAT), and was ´ partially funded by the ‘Plan Estatal de Investigacion Cient ´ ´ıfica y Tecnica y de Innovaci ´ on’ program of the Spanish government. ´ Funding for the DES Projects has been provided by the US Department of Energy, the US National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundac¸ao Carlos Chagas Filho de Amparo ˜ a Pesquisa do ` Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cient´ıfico e Tecnologico and the Minist ´ erio da Ci ´ encia, Tecnologia ˆ e Inovac¸ao, the Deutsche Forschungsgemeinschaft, and the Collab- ˜ orating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambien- ´ tales y Tecnologicas-Madrid, the University of Chicago, Univer- ´ sity College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenossische Technische Hochschule (ETH) ¨ Zurich, Fermi National Accelerator Laboratory, the University of ¨ Illinois at Urbana-Champaign, the Institut de Ciencies de l’Espai ` (IEEC/CSIC), the Institut de F´ısica d’Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitat¨ Munchen and the associated Excellence Cluster Universe, the Uni- ¨ versity of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M University, and the OzDES Membership Consortium. This paper is based in part on observations at Cerro Tololo InterAmerican Observatory, National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The DES data management system is supported by the National Science Foundation under Grant Numbers AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2015- 71825, ESP2015-66861, FPA2015-68048, SEV-2016-0588, SEV2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013) including ERC grant agreements 240672, 291329, 306478, and 615929. We acknowledge support from the Brazilian Instituto Nacional de Cienciae Tecnologia ˆ (INCT) e-Universe (CNPq grant 465376/2014-2). This paper has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the US Department of Energy, Office of Science, Office of High Energy Physics. PV acknowledges the support from the grant MIUR PRIN 2015 ‘Cosmology and Fundamental Physics: illuminating the Dark Universe with Euclid’. AK has been supported by a Juan de la Cierva fellowship from MINECO with project number IJC2018-037730-I. Funding for this project was also available in part through SEV-2015-0548 and AYA2017-89891-P. This project has also received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 754558.
- Published
- 2021
27. The High Latitude Spectroscopic Survey on the Nancy Grace Roman Space Telescope
- Author
-
Yun Wang, Zhongxu Zhai, Anahita Alavi, Elena Massara, Alice Pisani, Andrew Benson, Christopher M. Hirata, Lado Samushia, David H. Weinberg, James Colbert, Olivier Doré, Tim Eifler, Chen Heinrich, Shirley Ho, Elisabeth Krause, Nikhil Padmanabhan, David Spergel, and Harry I. Teplitz
- Subjects
High Energy Physics - Phenomenology ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,High Energy Physics - Phenomenology (hep-ph) ,Space and Planetary Science ,FOS: Physical sciences ,Astronomy and Astrophysics ,General Relativity and Quantum Cosmology (gr-qc) ,General Relativity and Quantum Cosmology ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The Nancy Grace Roman Space Telescope will conduct a High Latitude Spectroscopic Survey (HLSS) over a large volume at high redshift, using the near-IR grism (1.0-1.93 $\mu$m, $R=435-865$) and the 0.28 deg$^2$ wide field camera. We present a reference HLSS which maps 2000 deg$^2$ and achieves an emission line flux limit of 10$^{-16}$ erg/s/cm$^2$ at 6.5$\sigma$, requiring $\sim$0.6 yrs of observing time. We summarize the flowdown of the Roman science objectives to the science and technical requirements of the HLSS. We construct a mock redshift survey over the full HLSS volume by applying a semi-analytic galaxy formation model to a cosmological N-body simulation, and use this mock survey to create pixel-level simulations of 4 deg$^2$ of HLSS grism spectroscopy. We find that the reference HLSS would measure $\sim$ 10 million H$\alpha$ galaxy redshifts that densely map large scale structure at $z=1-2$ and 2 million [OIII] galaxy redshifts that sparsely map structures at $z=2-3$. We forecast the performance of this survey for measurements of the cosmic expansion history with baryon acoustic oscillations and the growth of large scale structure with redshift space distortions. We also study possible deviations from the reference design, and find that a deep HLSS at $f_{\rm line}>7\times10^{-17}$erg/s/cm$^2$ over 4000 deg$^2$ (requiring $\sim$1.5 yrs of observing time) provides the most compelling stand-alone constraints on dark energy from Roman alone. This provides a useful reference for future optimizations. The reference survey, simulated data sets, and forecasts presented here will inform community decisions on the final scope and design of the Roman HLSS., Comment: 29 pages, 8 figures, ApJ submitted
- Published
- 2021
- Full Text
- View/download PDF
28. Probing gravity with the DES-CMASS sample and BOSS spectroscopy
- Author
-
Carlos Solans Sanchez, Alexandra Amon, Jack Elvin-Poole, Felipe Menanteau, Michael Schubnell, Dragan Huterer, S. Lee, Antonella Palmese, S. Everett, David J. Brooks, M. A. G. Maia, V. Scarpine, Daniel Thomas, Joseph J. Mohr, Erin Sheldon, Adriano Pieres, M. March, David J. James, M. Costanzi, F. Paz-Chinchón, Josh Frieman, Samuel Hinton, Vivian Miranda, Pablo Fosalba, J. DeRose, E. Suchyta, G. Gutierrez, M. Smith, Jennifer L. Marshall, August E. Evrard, Ashley J. Ross, Daniel Gruen, G. Tarle, E. M. Huff, P. Lemos, K. Honscheid, Ami Choi, Ben Hoyle, Ramon Miquel, Michel Aguena, J. Muir, D. W. Gerdes, J. De Vicente, I. Sevilla-Noarbe, Enrique Gaztanaga, L. F. Secco, N. Weaverdyck, A. Chen, Christopher J. Conselice, Maria E. S. Pereira, S. Samuroff, W. G. Hartley, J. Carretero, Marco Raveri, Hui Kong, J. P. Dietrich, Juan Garcia-Bellido, R. Cawthon, Christopher M. Hirata, I. Ferrero, N. Kuropatkin, P. Vielzeuf, Tim Eifler, C. D. Leonard, M. Carrasco Kind, F. Andrade-Oliveira, D. L. Burke, A. A. Plazas Malagón, T. N. Varga, Adam Amara, S. Allam, Robert A. Gruendl, M Gatti, L. N. da Costa, Ofer Lahav, Robert Morgan, M. E. C. Swanson, J. Prat, Marcos Lima, D. L. Hollowood, S. Serrano, A. Campos, C. Davis, J. Gschwend, A. Roodman, Tommaso Giannantonio, Gary Bernstein, Peter Doel, A. Carnero Rosell, H. T. Diehl, Kyler Kuehn, Niall MacCrann, Agnès Ferté, E. Bertin, Joe Zuntz, Markus Rau, Jonathan Blazek, Sarah Bridle, Scott Dodelson, S. Desai, Michael Troxel, Jochen Weller, F. J. Castander, Chun-Hao To, E. J. Sanchez, Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), DES, Department of Energy (US), National Science Foundation (US), Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), Generalitat de Catalunya, European Commission, Alfred P. Sloan Foundation, Ministerio de Economía y Competitividad (España), Lee, S, Huff, E M, Choi, A, Elvin-Poole, J, Hirata, C, Honscheid, K, Maccrann, N, Ross, A J, Troxel, M A, Eifler, T F, Kong, H, Ferté, A, Blazek, J, Huterer, D, Amara, A, Campos, A, Chen, A, Dodelson, S, Lemos, P, Leonard, C D, Miranda, V, Muir, J, Raveri, M, Secco, L F, Weaverdyck, N, Zuntz, J, Bridle, S L, Davis, C, Derose, J, Gatti, M, Prat, J, Rau, M M, Samuroff, S, Sánchez, C, Vielzeuf, P, Aguena, M, Allam, S, Amon, A, Andrade-Oliveira, F, Bernstein, G M, Bertin, E, Brooks, D, Burke, D L, Rosell, A Carnero, Carrasco , Kind, M, Carretero, J, Castander, F J, Cawthon, R, Conselice, C, Costanzi, M, da , Costa, L N, Pereira, M E S, De , Vicente, J, Desai, S, Diehl, H T, Dietrich, J P, Doel, P, Everett, S, Evrard, A E, Ferrero, I, Fosalba, P, Frieman, J, García-Bellido, J, Gaztanaga, E, Gerdes, D W, Giannantonio, T, Gruen, D, Gruendl, R A, Gschwend, J, Gutierrez, G, Hartley, W G, Hinton, S R, Hollowood, D L, Hoyle, B, James, D J, Kuehn, K, Kuropatkin, N, Lahav, O, Lima, M, Maia, M A G, March, M, Marshall, J L, Menanteau, F, Miquel, R, Mohr, J J, Morgan, R, Palmese, A, Paz-Chinchón, F, Pieres, A, Malagón, A A Plaza, Roodman, A, Sanchez, E, Scarpine, V, Schubnell, M, Serrano, S, Sevilla-Noarbe, I, Sheldon, E, Smith, M, Suchyta, E, Swanson, M E C, Tarle, G, Thomas, D, To, C, Varga, T N, and Weller, J
- Subjects
gravitation: model ,Astrophysics ,baryon: oscillation: acoustic ,01 natural sciences ,DESI ,large scales ,cosmological model: parameter space ,general relativity ,LENTES GRAVITACIONAIS ,cluster ,dark energy ,010303 astronomy & astrophysics ,Weak gravitational lensing ,Physics ,cosmological parameters ,gravitational lensing ,large-scale structure of the Universe ,Astrophysics - Cosmology and Nongalactic Astrophysics ,symbols ,cfhtlens ,cosmological parameter ,satellite: Planck ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,General relativity ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,tomography ,efficient ,symbols.namesake ,redshift-space distortions ,statistical analysis ,gravitation: lens ,0103 physical sciences ,overlap ,structure ,Planck ,dark energy survey ,Astrophysics::Galaxy Astrophysics ,010308 nuclear & particles physics ,Astronomy and Astrophysics ,cross-correlation ,redshift ,Redshift ,Galaxy ,testing gravity ,Baryon ,Boss ,Space and Planetary Science ,Dark energy ,galaxy ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,cosmology - Abstract
DES Collaboration: et al., The DES-CMASS sample (DMASS) is designed to optimally combine the weak lensing measurements from the Dark Energy Survey (DES) and redshift-space distortions (RSD) probed by the CMASS galaxy sample from the Baryonic Oscillation Spectroscopic Survey. In this paper, we demonstrate the feasibility of adopting DMASS as the equivalent of CMASS for a joint analysis of DES and BOSS in the framework of modified gravity. We utilize the angular clustering of the DMASS galaxies, cosmic shear of the DES METACALIBRATION sources, and cross-correlation of the two as data vectors. By jointly fitting the combination of the data with the RSD measurements from the CMASS sample and Planck data, we obtain the constraints on modified gravity parameters μ0=−0.37+0.47−0.45 and Σ0=0.078+0.078−0.082. Our constraints of modified gravity with DMASS are tighter than those with the DES Year 1 REDMAGIC sample with the same external data sets by 29 per cent for μ0 and 21 per cent for Σ0, and comparable to the published results of the DES Year 1 modified gravity analysis despite this work using fewer external data sets. This improvement is mainly because the galaxy bias parameter is shared and more tightly constrained by both CMASS and DMASS, effectively breaking the degeneracy between the galaxy bias and other cosmological parameters. Such an approach to optimally combine photometric and spectroscopic surveys using a photometric sample equivalent to a spectroscopic sample can be applied to combining future surveys having a limited overlap such as DESI and LSST., AC acknowledges support from NASA grant no. 15-WFIRST15-0008. During the preparation of this paper, C.H. was supported by the Simons Foundation, NASA, and the U.S. Department of Energy. The DES data management system is supported by the National Science Foundation under Grant Numbers AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MICINN under grants ESP2017-89838, PGC2018-094773, PGC2018-102021, SEV-2016-0588, SEV-2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478. We acknowledge support from the Brazilian Instituto Nacional de Ciência e Tecnologia (INCT) do e-Universo (CNPq grant no. 465376/2014-2). This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science.
- Published
- 2021
- Full Text
- View/download PDF
29. SPHEREx: NASA's near-infrared spectrophotometric all-sky survey
- Author
-
Andreas L. Faisst, Phillip Korngut, Yi Kuan Chiang, S. Padin, James J. Bock, Michael Zemcov, Jae Hwan Kang, Jeonghyun Pyo, Katrin Heitmann, Sean Bryan, Daniel Masters, B. P. Crill, Howard Hui, Steve Unwin, Roberta Paladini, Tim Eifler, Hien Nguyen, B. Kecman, Hiromasa Miyasaka, Harry I. Teplitz, Chen Heinrich, Michael W. Werner, Milad Pourrahmani, Asantha Cooray, Tzu-Ching Chang, Matthew L. N. Ashby, Gary J. Melnick, Christopher M. Hirata, C. Darren Dowell, G. P. Dubois-Felsmann, Hooshang Nayyeri, Bomee Lee, Volker Tolls, Elisabeth Krause, Andrew Davis, Walter R. Cook, Rachel Akeson, Teresa Symons, Grigory Heaton, Roger Smith, Yujin Yang, Lindsey Bleem, Karin I. Öberg, J. Davy Kirkpatrick, Viktor Hristov, Jill Burnham, Yong Seong Song, Woong-Seob Jeong, Rogier A. Windhorst, OIivier Doré, Philip Daniel Mauskopf, Carey M. Lisse, Joyce Byunh, Salman Habib, Lystrup, Makenzie, Perrin, Marshall D., Batalha, Natalie, Siegler, Nicholas, and Tong, Edward C.
- Subjects
Design phase ,Data processing ,Extragalactic background light ,Sky ,media_common.quotation_subject ,Near-infrared spectroscopy ,Astronomy ,Environmental science ,Reionization ,Cosmology ,media_common - Abstract
SPHEREx, the Spectro-Photometer for the History of the Universe, Epoch of Reionization, and ices Explorer, is a NASA MIDEX mission planned for launch in 2024. SPHEREx will carry out the first all-sky spectral survey at wavelengths between 0.75µm and 5µm with spectral resolving power ~40 between 0.75 and 3.8µm and ~120 between 3.8 and 5µm At the end of its two-year mission, SPHEREx will provide 0.75-to-5µm spectra of each 6.”2 x 6.”2 pixel on the sky - 14 billion spectra in all. This paper updates an earlier description of SPHEREx presenting changes made during the mission's Preliminary Design Phase, including a discussion of instrument integration and test ow and a summary of the data processing, analysis, and distribution plans.
- Published
- 2020
30. Theory and Combined Probes
- Author
-
Wayne Hu, Eduardo Rozo, Elisabeth Krause, Scott Dodelson, Dragan Huterer, Jochen Weller, and Tim Eifler
- Published
- 2020
31. Discovery of a Candidate Binary Supermassive Black Hole in a Periodic Quasar from Circumbinary Accretion Variability
- Author
-
David J. James, Yu Ching Chen, Pablo Fosalba, David J. Brooks, Keith Bechtol, G. Gutierrez, Karl Glazebrook, Tim Eifler, V. Scarpine, Santiago Serrano, Flavia Sobreira, H. Thomas Diehl, Josh Frieman, Santiago Avila, Xin Liu, Carlos E. Cunha, Juan de Vicente, Shantanu Desai, Peter Doel, Jennifer L. Marshall, Juan Garcia-Bellido, Felipe Menanteau, Aurelio Carnero Rosell, Daniel Gruen, Emmanuel Bertin, Enrique Gaztanaga, Gregory Tarle, Richard Kessler, Mathew Smith, Ramon Miquel, B. Flaugher, J. Carretero, Matias Carrasco Kind, Devon L. Hollowood, Tamara M. Davis, K. Honscheid, Vinu Vikram, Marcos Lima, Richard G. McMahon, Hengxiao Guo, E. J. Sanchez, Molly E. C. Swanson, E. Suchyta, J. Gschwend, Elisabeth Krause, August E. Evrard, Yue Shen, Francisco J. Castander, Manda Banerji, Luiz N. da Costa, Paul Martini, Marcio A. G. Maia, R. Chris Smith, Christopher R. Davis, A. Miguel Holgado, Will Hartley, Eric Morganson, Ben Hoyle, S. Allam, Robert A. Gruendl, Andres Plazas Malagon, Kyler Kuehn, Chris B. D'Andrea, Alistair R. Walker, Marcelle Soares-Santos, Michael Schubnell, Wei-Ting Liao, E. Buckley-Geer, James Annis, A. Roodman, UAM. Departamento de Física Teórica, Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), DES, National Science Foundation (US), Ministerio de Economía y Competitividad (España), Ministerio de Ciencia, Innovación y Universidades (España), Generalitat de Catalunya, European Commission, Australian Research Council, and Instituto Nacional de Ciência e Tecnologia (Brasil)
- Subjects
Astrophysics ,Surveys ,7. Clean energy ,01 natural sciences ,high-redshift [Galaxies] ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Data Release ,Galaxies: Active ,Dark Energy ,nuclei [Galaxies] ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,Galaxy Mergers ,Digital Sky Survey ,Galaxies: Nuclei ,Oscillations ,active [Galaxies] ,QUASARES ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Gravitational-Waves ,0103 physical sciences ,Galaxy formation and evolution ,Quasars: General ,Astrophysics::Galaxy Astrophysics ,Supermassive black hole ,010308 nuclear & particles physics ,Gravitational wave ,Spectral Energy-Distributions ,Física ,Astronomy and Astrophysics ,Quasar ,general [Quasars] ,Black hole physics ,Mass ,Light curve ,Galaxies: High-Redshift ,Astrophysics - Astrophysics of Galaxies ,Redshift ,Black Hole Physics ,13. Climate action ,Space and Planetary Science ,Variable Quasars ,Astrophysics of Galaxies (astro-ph.GA) ,Dark energy ,Galactic Nuclei ,Circumbinary planet ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
Binary supermassive black holes (BSBHs) are expected to be a generic byproduct from hierarchical galaxy formation. The final coalescence of BSBHs is thought to be the loudest gravitational wave (GW) siren, yet no confirmed BSBH is known in the GW-dominated regime. While periodic quasars have been proposed as BSBH candidates, the physical origin of the periodicity has been largely uncertain. Here, we report discovery of a periodicity (p = 1607 ± 7 d) at 99.95 per cent significance (with a global p value of ∼10-3 accounting for the look elsewhere effect) in the optical light curves of a redshift 1.53 quasar, SDSS J025214.67-002813.7. Combining archival Sloan Digital Sky Survey data with new, sensitive imaging from the Dark Energy Survey, the total ∼20-yr time baseline spans ∼4.6 cycles of the observed 4.4-yr (rest frame 1.7-yr) periodicity. The light curves are best fit by a bursty model predicted by hydrodynamic simulations of circumbinary accretion discs. The periodicity is likely caused by accretion rate modulation by a milli-parsec BSBH emitting GWs, dynamically coupled to the circumbinary accretion disc. A bursty hydrodynamic variability model is statistically preferred over a smooth, sinusoidal model expected from relativistic Doppler boost, a kinematic effect proposed for PG1302-102. Furthermore, the frequency dependence of the variability amplitudes disfavours Doppler boost, lending independent support to the circumbinary accretion variability hypothesis. Given our detection rate of one BSBH candidate from circumbinary accretion variability out of 625 quasars, it suggests that future large, sensitive synoptic surveys such as the Vera C. Rubin Observatory Legacy Survey of Space and Time may be able to detect hundreds to thousands of candidate BSBHs from circumbinary accretion with direct implications for Laser Interferometer Space Antenna., Liao, Wei-Ting, et al. DES Collaboration, The DES data management system is supported by the National Science Foundation under grant numbers AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2015-71825, ESP2015-66861, FPA2015-68048, SEV-2016-0588, SEV-2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478. We acknowledge support from the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO), through project number CE110001020, and the Brazilian Instituto Nacional de Ciênciae Tecnologia (INCT) e-Universe (CNPq grant 465376/2014-2).
- Published
- 2020
32. The STRong lensing Insights into the Dark Energy Survey (STRIDES) 2017/2018 follow-up campaign: discovery of 10 lensed quasars and 10 quasar pairs
- Author
-
A. A. Plazas, C. Lemon, Antonella Palmese, M. Smith, M. A. G. Maia, G C-F Chen, J. Carretero, Anowar J. Shajib, Marcos Lima, Adriano Agnello, Frederic Courbin, Ramon Miquel, Shantanu Desai, D. L. Burke, G. Gutierrez, G. Tarle, Daniel Gruen, M. March, Ofer Lahav, Paul L. Schechter, Tim Eifler, Enrique Gaztanaga, Thomas E. Collett, A. Carnero Rosell, M. Costanzi, Yordanka Apostolovski, Kyler Kuehn, Juan Garcia-Bellido, Richard G. McMahon, Christopher D. Fassnacht, S. Allam, Robert A. Gruendl, Elisabeth Krause, David J. Brooks, A. Melo, Simon Birrer, Motta, David J. James, D. W. Gerdes, Matthew W. Auger, Michael Schubnell, Tommaso Treu, Josh Frieman, Cristian E. Rusu, Felipe Menanteau, M. Carrasco Kind, A. Roodman, B. Flaugher, J. Annis, Alistair R. Walker, Marcelle Soares-Santos, Timo Anguita, E. Suchyta, S. Serrano, K. Honscheid, N. Kuropatkin, F. Paz-Chinchón, Santiago Avila, Jennifer L. Marshall, L. N. da Costa, A. G. Kim, J. De Vicente, Huan Lin, E. Buckley-Geer, T. M. C. Abbott, E. Bertin, E. J. Sanchez, J. Gschwend, Lemon, C., Auger, M. W., Mcmahon, R., Anguita, T., Apostolovski, Y., Chen, G. C. -F., Fassnacht, C. D., Melo, A. D., Motta, V., Shajib, A., Treu, T., Agnello, A., Buckley-Geer, E., Schechter, P. L., Birrer, S., Collett, T., Courbin, F., Rusu, C. E., Abbott, T. M. C., Allam, S., Annis, J., Avila, S., Bertin, E., Brooks, D., Burke, D. L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Costanzi, M., da Costa, L. N., De Vicente, J., Desai, S., Eifler, T. F., Flaugher, B., Frieman, J., García-Bellido, J., Gaztanaga, E., Gerdes, D. W., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Honscheid, K., James, D. J., Kim, A., Krause, E., Kuehn, K., Kuropatkin, N., Lahav, O., Lima, M., Lin, H., Maia, M. A. G., March, M., Marshall, J. L., Menanteau, F., Miquel, R., Palmese, A., Paz-Chinchón, F., Plazas, A. A., Roodman, A., Sanchez, E., Schubnell, M., Serrano, S., Smith, M., Soares-Santos, M., Suchyta, E., Tarle, G., Walker, A. R., Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), DES, McMahon, Richard [0000-0001-8447-8869], and Apollo - University of Cambridge Repository
- Subjects
candidates ,observational [methods] ,time-delay ,Astrophysics ,01 natural sciences ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,sky ,Physics ,Faint Object Spectrograph ,Astrophysics::Instrumentation and Methods for Astrophysics ,gravitational lensing: strong ,gravitational lenses ,strong [gravitational lensing] ,Astrophysics::Earth and Planetary Astrophysics ,methods: observational ,sextractor ,Astronomical and Space Sciences ,astro-ph.GA ,FOS: Physical sciences ,selection ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astronomy & Astrophysics ,Photometry (optics) ,quasars: general ,Gravitational Lenses ,0103 physical sciences ,Quasars ,Spectrograph ,STFC ,Astrophysics::Galaxy Astrophysics ,general [quasars] ,010308 nuclear & particles physics ,variability ,Near-infrared spectroscopy ,RCUK ,Astronomy and Astrophysics ,Quasar ,Galaxies ,Light curve ,redshift ,Astrophysics - Astrophysics of Galaxies ,Redshift ,Galaxy ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,gaia ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,cosmograil - Abstract
We report the results of the STRong lensing Insights from the Dark Energy Survey (STRIDES) follow-up campaign of the late 2017/early 2018 season. We obtained spectra of 65 lensed quasar candidates either with EFOSC2 on the NTT or ESI on Keck, which confirm 10 new gravitationally lensed quasars and 10 quasar pairs with similar spectra, but which do not show a lensing galaxy in DES images. Eight lensed quasars are doubly imaged with source redshifts between 0.99 and 2.90, one is triply imaged by a group (DESJ0345-2545, $z=1.68$), and one is quadruply imaged (quad: DESJ0053-2012, $z=3.8$). Singular isothermal ellipsoid models for the doubles, based on high-resolution imaging from SAMI on SOAR or NIRC2 on Keck, give total magnifications between 3.2 and 5.6, and Einstein radii between 0.49 and 1.97 arcseconds. After spectroscopic follow-up, we extract multi-epoch $grizY$ photometry of confirmed lensed quasars and contaminant quasar+star pairs from the first 4 years of DES data using parametric multi-band modelling, and compare variability in each system's components. By measuring the reduced ${\chi}^2$ associated with fitting all epochs to the same magnitude, we find a simple cut on the less variable component that retains all confirmed lensed quasars, while removing 94 per cent of contaminant systems with stellar components. Based on our spectroscopic follow-up, this variability information can improve selection of lensed quasars and quasar pairs from 34-45 per cent to 51-70 per cent, with the majority of remaining contaminants being compact star-forming galaxies. Using mock lensed quasar lightcurves we demonstrate that selection based only on variability will over-represent the quad fraction by 10 per cent over a complete DES magnitude-limited sample (excluding microlensing differences), explained by the magnification bias and hence lower luminosity (more variable) sources in quads., Comment: 22 pages, 16 figures, submitted to MNRAS
- Published
- 2020
33. Blinding multiprobe cosmological experiments
- Author
-
Michael Troxel, Matt J. Jarvis, Kyler Kuehn, I. Sevilla-Noarbe, Tim Eifler, Josh Frieman, N. Kuropatkin, G. Tarle, Jochen Weller, Shantanu Desai, J. Gschwend, Alistair R. Walker, Gary Bernstein, W. G. Hartley, L. N. da Costa, M. Smith, Ramon Miquel, W. C. Wester, Peter Melchior, Daniel Gruen, E. J. Sanchez, Michael Schubnell, David J. James, A. A. Plazas, Felipe Menanteau, Elisabeth Krause, Pablo Fosalba, R. Cawthon, Antonella Palmese, Keith Bechtol, E. Bertin, D. L. Burke, J. Carretero, Santiago Avila, Daniel Thomas, D. W. Gerdes, E. Buckley-Geer, F. Elsner, Peter Doel, S. Allam, Robert A. Gruendl, V. Scarpine, Joe Zuntz, F. Paz-Chinchón, M. Carrasco Kind, A. Carnero Rosell, A. K. Romer, M. Costanzi, J. Muir, R. L. C. Ogando, Dragan Huterer, J. P. Dietrich, Juan Garcia-Bellido, J. Annis, David J. Brooks, Jennifer L. Marshall, Ofer Lahav, E. Suchyta, J. De Vicente, A. Roodman, M. March, D. L. Hollowood, S. Serrano, S. Everett, Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), DES, Muir, J., Bernstein, G. M., Huterer, D., Elsner, F., Krause, E., Roodman, A., Allam, S., Annis, J., Avila, S., Bechtol, K., Bertin, E., Brooks, D., Buckley-Geer, E., Burke, D. L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Cawthon, R., Costanzi, M., da Costa, L. N., De Vicente, J., Desai, S., Dietrich, J. P., Doel, P., Eifler, T. F., Everett, S., Fosalba, P., Frieman, J., García-Bellido, J., Gerdes, D. W., Gruen, D., Gruendl, R. A., Gschwend, J., Hartley, W. G., Hollowood, D. L., James, D. J., Jarvis, M., Kuehn, K., Kuropatkin, N., Lahav, O., March, M., Marshall, J. L., Melchior, P., Menanteau, F., Miquel, R., Ogando, R. L. C., Palmese, A., Paz-Chinchón, F., Plazas, A. A., Romer, A. K., Sanchez, E., Scarpine, V., Schubnell, M., Serrano, S., Sevilla-Noarbe, I., Smith, M., Suchyta, E., Tarle, G., Thomas, D., Troxel, M. A., Walker, A. R., Weller, J., Wester, W., Zuntz, J., and Des, Collaboration
- Subjects
Accuracy and precision ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Blinding ,statistical [methods] ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Cosmology ,methods: numerical ,0103 physical sciences ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Cluster analysis ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010303 astronomy & astrophysics ,Weak gravitational lensing ,Physics ,methods: statistical ,010308 nuclear & particles physics ,Estimation theory ,Astronomy and Astrophysics ,numerical [methods] ,methods: data analysis ,Galaxy ,Space and Planetary Science ,cosmology: observations ,data analysi [methods] ,Dark energy ,astro-ph.CO ,large-scale structure of Universe ,Astrophysics - Instrumentation and Methods for Astrophysics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Algorithm ,Astrophysics - Cosmology and Nongalactic Astrophysics ,observation [cosmology] ,astro-ph.IM - Abstract
The goal of blinding is to hide an experiment's critical results -- here the inferred cosmological parameters -- until all decisions affecting its analysis have been finalised. This is especially important in the current era of precision cosmology, when the results of any new experiment are closely scrutinised for consistency or tension with previous results. In analyses that combine multiple observational probes, like the combination of galaxy clustering and weak lensing in the Dark Energy Survey (DES), it is challenging to blind the results while retaining the ability to check for (in)consistency between different parts of the data. We propose a simple new blinding transformation that works by modifying the summary statistics that are input to parameter estimation, such as two-point correlation functions. The transformation shifts the measured statistics to new values that are consistent with (blindly) shifted cosmological parameters, while preserving internal (in)consistency. We apply the blinding transformation to simulated data for the projected DES Year 3 galaxy clustering and weak lensing analysis, demonstrating that practical blinding is achieved without significant perturbation of internal-consistency checks, as measured here by degradation of the $\chi^2$ between data and best-fitting model. Our blinding method conserves $\chi^2$ more precisely as experiments evolve to higher precision., Comment: 18 pages, 13 figures, data available upon request. Updated to match published version
- Published
- 2020
34. Observation and confirmation of nine strong-lensing systems in Dark Energy Survey Year 1 data
- Author
-
M. Smith, Daniel Gruen, V. Scarpine, A. K. Romer, Felipe Menanteau, M. E. C. Swanson, Eli S. Rykoff, E. Suchyta, Enrique Gaztanaga, August E. Evrard, J. Carretero, Marco A. P. Lima, Juan Garcia-Bellido, Brian Nord, Michael Schubnell, Adriano Agnello, C. Davis, Keith Bechtol, Flavia Sobreira, Santiago Avila, M. Carrasco Kind, A. Carnero Rosell, I. Sevilla-Noarbe, Carlos E. Cunha, Yanxi Zhang, Douglas L. Tucker, Kyler Kuehn, Tim Eifler, G. Gutierrez, G. Tarle, A. A. Plazas, N. Kuropatkin, Enrique Fernández, L. N. da Costa, Huan Lin, Josh Frieman, M. March, K. Honscheid, David J. James, David J. Brooks, R. H. Schindler, Pablo Fosalba, T. M. C. Abbott, D. L. Burke, Ofer Lahav, Peter Doel, E. J. Sanchez, S. Allam, Robert A. Gruendl, Marcelle Soares-Santos, H. T. Diehl, J. Annis, D. L. Hollowood, J. De Vicente, W. G. Hartley, Jennifer L. Marshall, Daniel Thomas, E. Buckley-Geer, Adam Amara, Ramon Miquel, Thomas E. Collett, A. Roodman, B. Flaugher, Ben Hoyle, M. A. G. Maia, Peter Melchior, Department of Energy (US), National Science Foundation (US), Ministerio de Ciencia, Innovación y Universidades (España), Science and Technology Facilities Council (UK), University of Illinois, Kavli Institute for Theoretical Physics, University of Chicago, The Ohio State University, Texas A&M University, Financiadora de Estudos e Projetos (Brasil), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico (Brasil), Ministério da Ciência, Tecnologia e Inovação (Brasil), and German Research Foundation
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Higher education ,Gravitational lensing: strong ,DES [surveys] ,astro-ph.GA ,Library science ,Techniques: spectroscopic ,FOS: Physical sciences ,clusters [gravitational lensing] ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,survey [gravitational lensing] ,Galaxies: individual ,0103 physical sciences ,media_common.cataloged_instance ,Astrophysics::Solar and Stellar Astrophysics ,European union ,general [gravitational lenses] ,010303 astronomy & astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Astrophysics::Galaxy Astrophysics ,STFC ,media_common ,Physics ,010308 nuclear & particles physics ,business.industry ,RCUK ,Astronomy and Astrophysics ,Astrophysics - Astrophysics of Galaxies ,gravitational lensing individual ,Alliance ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,strong [gravitational lensing] ,Fundamental physics ,astro-ph.CO ,Christian ministry ,business ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics ,astro-ph.IM - Abstract
We describe the observation and confirmation of nine new strong gravitational lenses discovered in Year 1 data from the Dark Energy Survey (DES). We created candidate lists based on (i) galaxy group and cluster samples, and (ii) photometrically selected galaxy samples. We selected 46 candidates through visual inspection and then used the Gemini Multi-Object Spectrograph (GMOS) at the Gemini South telescope to acquire a spectroscopic follow-up of 21 of these candidates. Through an analysis of these spectroscopic follow-up data, we confirmed nine new lensing systems and rejected two candidates, and the analysis was inconclusive on 10 candidates. For each of the confirmed systems, our report measured spectroscopic properties, estimated source image-lens separations, and estimated enclosed masses as well. The sources that we targeted have an i-band surface brightness range of i ∼ 22-24 mag arcsec and a spectroscopic redshift range of z ∼ 0.8−2.6. The lens galaxies have a photometric redshift range of z ∼ 0.3−0.7. The lensing systems range in source image-lens separation from 2 to 9 arcsec and in enclosed mass from 10 to 10 M, Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundac¸ão Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciência e Tecnologia, the Deutsche Forschungsge-meinschaft, and the Collaborating Institutions in the DES. The DES data management system is supported by the National Science Foundation under Grant Number AST-1138766. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986, and Centro de Excelencia Severo Ochoa SEV-2012-0234, some of which include ERDF funds from the European Union. This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
- Published
- 2020
35. Dark Energy Survey Identification of A Low-Mass Active Galactic Nucleus at Redshift 0.823 from Optical Variability
- Author
-
Daniel Gruen, S. Everett, Marcos Lima, Colin J. Burke, K. Honscheid, Kyler Kuehn, A. Roodman, Luiz N. da Costa, D. W. Gerdes, David J. Brooks, M. Costanzi, Brad E. Tucker, Ricardo L. C. Ogando, A. K. Romer, Devon L. Hollowood, C. Lidman, E. J. Sanchez, Daniela Carollo, Peter Doel, Yu-Ching Chen, Michel Aguena, Aurelio Carnero Rosell, Emmanuel Bertin, E. Suchyta, Enrique Gaztanaga, N. E. Sommer, Juan Garcia-Bellido, Michael Schubnell, Samuel Hinton, G. Gutierrez, V. Scarpine, Eric Morganson, Juan de Vicente, Molly E. C. Swanson, Marcelle Soares-Santos, T. N. Varga, S. Allam, Robert A. Gruendl, Santiago Serrano, F. Paz-Chinchón, Anais Möller, Xin Liu, Kedar A. Phadke, Tim Eifler, Santiago Avila, A. A. Plazas, Ramon Miquel, Marcio A. G. Maia, J. Gschwend, Felipe Menanteau, Kaiwen Zhang, Matias Carrasco Kind, David J. James, Gregory Tarle, Hengxiao Guo, Shantanu Desai, Yue Shen, Mathew Smith, Antonella Palmese, Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique de Clermont (LPC), Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), DES, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS), Guo, Hengxiao, Burke, Colin J., Liu, Xin, Phadke, Kedar A., Zhang, Kaiwen, Chen, Yu-Ching, Gruendl, Robert A., Lidman, Christopher, Shen, Yue, Morganson, Eric, Aguena, Michel, Allam, Sahar, Avila, Santiago, Bertin, Emmanuel, Brooks, David, Rosell, Aurelio Carnero, Carollo, Daniela, Kind, Matias Carrasco, Costanzi, Matteo, da Costa, Luiz N., De Vicente, Juan, Desai, Shantanu, Doel, Peter, Eifler, Tim F., Everett, Spencer, García-Bellido, Juan, Gaztanaga, Enrique, Gerdes, David W., Gruen, Daniel, Gschwend, Julia, Gutierrez, Gaston, Hinton, Samuel R., Hollowood, Devon L., Honscheid, Klau, James, David J., Kuehn, Kyler, Lima, Marco, Maia, Marcio A. G., Menanteau, Felipe, Miquel, Ramon, Möller, Anai, Ogando, Ricardo L. C., Palmese, Antonella, Paz-Chinchón, Francisco, Plazas, Andrés A., Romer, Anita K., Roodman, Aaron, Sanchez, Eusebio, Scarpine, Vic, Schubnell, Michael, Serrano, Santiago, Smith, Mathew, Soares-Santos, Marcelle, Sommer, Natalia E., Suchyta, Eric, Swanson, Molly E. C., Tarle, Gregory, Tucker, Brad E., and Varga, Tamas N. (DES Collaboration)
- Subjects
Active galactic nucleus ,Stellar mass ,Astrophysics::High Energy Astrophysical Phenomena ,black hole physics ,galaxies: active ,nuclei [galaxies] ,FOS: Physical sciences ,active, [galaxies] ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,surveys ,galaxies: high-redshift ,galaxies: nuclei ,quasars: general ,01 natural sciences ,Luminosity ,0103 physical sciences ,survey ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Dwarf galaxy ,Physics ,Supermassive black hole ,general [quasars] ,010308 nuclear & particles physics ,Astronomy and Astrophysics ,Quasar ,black hole physic ,Astrophysics - Astrophysics of Galaxies ,Redshift ,Galaxy ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,high-redshift [galaxies] - Abstract
We report the identification of a low-mass AGN, DES J0218$-$0430, in a redshift $z = 0.823$ galaxy in the Dark Energy Survey (DES) Supernova field. We select DES J0218$-$0430 as an AGN candidate by characterizing its long-term optical variability alone based on DES optical broad-band light curves spanning over 6 years. An archival optical spectrum from the fourth phase of the Sloan Digital Sky Survey shows both broad Mg II and broad H$\beta$ lines, confirming its nature as a broad-line AGN. Archival XMM-Newton X-ray observations suggest an intrinsic hard X-ray luminosity of $L_{{\rm 2-12\,keV}}\sim7.6\pm0.4\times10^{43}$ erg s$^{-1}$, which exceeds those of the most X-ray luminous starburst galaxies, in support of an AGN driving the optical variability. Based on the broad H$\beta$ from SDSS spectrum, we estimate a virial BH mass of $M_{\bullet}\approx10^{6.43}$-$10^{6.72}M_{\odot}$ (with the error denoting 1$\sigma$ statistical uncertainties only), consistent with the estimation from OzDES, making it the lowest mass AGN with redshift $>$ 0.4 detected in optical. We estimate the host galaxy stellar mass to be $M_{\ast}\sim10^{10.5\pm0.3}M_{\odot}$ based on modeling the multi-wavelength spectral energy distribution. DES J0218$-$0430 extends the $M_{\bullet}$-$M_{\ast}$ relation observed in luminous AGNs at $z\sim1$ to masses lower than being probed by previous work. Our work demonstrates the feasibility of using optical variability to identify low-mass AGNs at higher redshift in deeper synoptic surveys with direct implications for the upcoming Legacy Survey of Space and Time at Vera C. Rubin Observatory., Comment: 13 pages, 8 figures, 1 table, accepted to MNRAS
- Published
- 2020
36. Detection of Cross-Correlation between Gravitational Lensing and γ Rays
- Author
-
Michael Troxel, Shin'ichiro Ando, Matt J. Jarvis, E. Bertin, Tesla E. Jeltema, Yanxi Zhang, I. Sevilla-Noarbe, Tim Eifler, A. Choi, N. Kuropatkin, K. Honscheid, F. J. Castander, Shantanu Desai, Nicolao Fornengo, Simone Ammazzalorso, M. Gatti, L. N. da Costa, M. A. G. Maia, Marcelle Soares-Santos, Enrique Gaztanaga, Ramon Miquel, Stefano Camera, Peter Melchior, Y. Omori, M. Smith, S. Samuroff, E. J. Sanchez, Carlos Solans Sanchez, Marco Regis, G. Gutierrez, Steve Kent, A. A. Plazas, Felipe Menanteau, Pablo Fosalba, Erin Sheldon, Antonella Palmese, D. H. Brooks, Keith Bechtol, D. L. Burke, M. E. C. Swanson, Tenglin Li, J. Carretero, Sarah Bridle, B. Flaugher, Gregory Tarle, Santiago Avila, Eli S. Rykoff, Daniel Thomas, D. W. Gerdes, Peter Doel, Robert A. Gruendl, V. Scarpine, H. T. Diehl, Joe Zuntz, Niall MacCrann, M. Carrasco Kind, A. Carnero Rosell, A. K. Romer, M. Costanzi, Vinu Vikram, Santiago Serrano, R. L. C. Ogando, J. P. Dietrich, Juan Garcia-Bellido, David Goldstein, J. Annis, Jennifer L. Marshall, Ofer Lahav, E. Suchyta, David James, J. De Vicente, Flavia Sobreira, Marcos Lima, A. Roodman, Tommaso Giannantonio, D. Gruen, D. L. Hollowood, S. Everett, Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), DES, GRAPPA (ITFA, IoP, FNWI), Ammazzalorso, S., Gruen, D., Regis, M., Camera, S., Ando, S., Fornengo, N., Bechtol, K., Bridle, S. L., Choi, A., Eifler, T. F., Gatti, M., Maccrann, N., Omori, Y., Samuroff, S., Sheldon, E., Troxel, M. A., Zuntz, J., Carrasco Kind, M., Annis, J., Avila, S., Bertin, E., Brooks, D., Burke, D. L., Carnero Rosell, A., Carretero, J., Castander, F. J., Costanzi, M., Da Costa, L. N., De Vicente, J., Desai, S., Diehl, H. T., Dietrich, J. P., Doel, P., Everett, S., Flaugher, B., Fosalba, P., Garcia-Bellido, J., Gaztanaga, E., Gerdes, D. W., Giannantonio, T., Goldstein, D. A., Gruendl, R. A., Gutierrez, G., Hollowood, D. L., Honscheid, K., James, D. J., Jarvis, M., Jeltema, T., Kent, S., Kuropatkin, N., Lahav, O., T. S., Li, Lima, M., Maia, M. A. G., Marshall, J. L., Melchior, P., Menanteau, F., Miquel, R., Ogando, R. L. C., Palmese, A., Plazas, A. A., Romer, A. K., Roodman, A., Rykoff, E. S., Sanchez, C., Sanchez, E., Scarpine, V., Serrano, S., Sevilla-Noarbe, I., Smith, M., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., Vikram, V., Zhang, Y., Ministerio de Economía y Competitividad (España), European Commission, European Research Council, and UAM. Departamento de Física Teórica
- Subjects
Small Scale Effects ,Software_OPERATINGSYSTEMS ,Gamma-Ray Energy ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,ComputingMethodologies_SIMULATIONANDMODELING ,Astrophysical Sources ,Astrophysics::High Energy Astrophysical Phenomena ,Dark matter ,General Physics and Astronomy ,FOS: Physical sciences ,Data_CODINGANDINFORMATIONTHEORY ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Gravitation and Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,01 natural sciences ,Gamma Ray Sources ,law.invention ,Gravitation ,Telescope ,law ,0103 physical sciences ,Hardware_INTEGRATEDCIRCUITS ,Astrophysics - Cosmology and Nongalactic Astrophysic ,Large Area Telescopes ,010306 general physics ,Blazar ,Cross Correlations ,STFC ,Weak gravitational lensing ,Astrophysics::Galaxy Astrophysics ,astro-ph.HE ,Gravitational Lensing ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,astro-ph.CO ,RCUK ,Física ,ComputerSystemsOrganization_PROCESSORARCHITECTURES ,Gravitational lens ,Dark energy ,Weak Gravitational Lensing ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Fermi Gamma-ray Space Telescope - Abstract
DES Collaboration: et al., In recent years, many γ-ray sources have been identified, yet the unresolved component hosts valuable information on the faintest emission. In order to extract it, a cross-correlation with gravitational tracers of matter in the Universe has been shown to be a promising tool. We report here the first identification of a cross-correlation signal between γ rays and the distribution of mass in the Universe probed by weak gravitational lensing. We use data from the Dark Energy Survey Y1 weak lensing data and the Fermi Large Area Telescope 9-yr γ-ray data, obtaining a signal-to-noise ratio of 5.3. The signal is mostly localized at small angular scales and high γ-ray energies, with a hint of correlation at extended separation. Blazar emission is likely the origin of the small-scale effect. We investigate implications of the large-scale component in terms of astrophysical sources and particle dark matter emission., The DES participants from Spanish institutions are partially supported by MINECO under Grants No. AYA2015-71825, No. ESP2015-66861, No. FPA2015-68048, No. SEV-2016-0588, No. SEV-2016-0597, and No. MDM-2015-0509, some of which include ERDF funds from the European Union. I. F. A. E. is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013) including ERC Grants No. 240672, No. 291329, and No. 306478.
- Published
- 2020
37. Increasing the census of L and T dwarfs in wide binary and multiple systems using Dark Energy Survey DR1 and Gaia DR2 data
- Author
-
M. E. C. Swanson, Josh Frieman, Peter Doel, I. Sevilla-Noarbe, N. Kuropatkin, T. N. Varga, L. N. da Costa, H. T. Diehl, E. Suchyta, G. Tarle, P. Martini, A. R. Walker, David J. James, Pablo Fosalba, J. Carretero, J. Gschwend, Felipe Menanteau, Tenglin Li, G. Gutierrez, Kyler Kuehn, K. Bechtol, L. de Paris, Enrique Gaztanaga, Santiago Avila, M. Smith, M. Aguena, J. De Vicente, B. Flaugher, Daniel Gruen, Brian Yanny, A. Carnero Rosell, David J. Brooks, Antonella Palmese, D. W. Gerdes, Juan Garcia-Bellido, M. Carrasco Kind, E. Bertin, M. March, Basilio X. Santiago, M. A. G. Maia, Tim Eifler, D. L. Hollowood, K. Honscheid, S. R. Hinton, S. Serrano, F. Paz-Chinchón, Sunayana Bhargava, Daniel Thomas, R. Miquel, E. Buckley-Geer, Jennifer L. Marshall, T. M. C. Abbott, S. Everett, E. J. Sanchez, Ben Burningham, M. dal Ponte, S. Allam, Robert A. Gruendl, A. A. Plazas, V. Scarpine, Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), DES, Department of Energy (US), National Science Foundation (US), Ministerio de Ciencia, Innovación y Universidades (España), Science and Technology Facilities Council (UK), University of Illinois, Kavli Institute for Theoretical Physics, University of Chicago, The Ohio State University, Texas A&M University, Financiadora de Estudos e Projetos (Brasil), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico (Brasil), Ministério da Ciência, Tecnologia e Inovação (Brasil), and German Research Foundation
- Subjects
Proper motion ,Brown dwarf ,FOS: Physical sciences ,Binary number ,Astrophysics ,Stellar classification ,7. Clean energy ,01 natural sciences ,general [binaries] ,stars: low-mass ,0103 physical sciences ,low-mass [stars] ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Earth and Planetary Astrophysics (astro-ph.EP) ,Physics ,010308 nuclear & particles physics ,Astronomy and Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Stars ,Astrophysics - Solar and Stellar Astrophysics ,binaries: general ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Dark energy ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Earth and Planetary Astrophysics ,brown dwarfs - Abstract
Full author list: M dal Ponte, B Santiago, A Carnero Rosell, B Burningham, B Yanny, J L Marshall, K Bechtol, P Martini, T S Li, L De Paris, T M C Abbott, M Aguena, S Allam, S Avila, E Bertin, S Bhargava, D Brooks, E Buckley-Geer, M Carrasco Kind, J Carretero, L N da Costa, J De Vicente, H T Diehl, P Doel, T F Eifler, S Everett, B Flaugher, P Fosalba, J Frieman, J García-Bellido, E Gaztanaga, D W Gerdes, D Gruen, R A Gruendl, J Gschwend, G Gutierrez, S R Hinton, D L Hollowood, K Honscheid, D J James, K Kuehn, N Kuropatkin, M A G Maia, M March, F Menanteau, R Miquel, A Palmese, F Paz-Chinchón, A A Plazas, E Sanchez, V Scarpine, S Serrano, I Sevilla-Noarbe, M Smith, E Suchyta, M E C Swanson, G Tarle, D Thomas, T N Varga, A R Walker, DES Collaboration, We present the discovery of 255 binary and 6 multiple system candidates with wide (> 5 arcsec) separation composed by ultracool dwarfs (UCDs) companions to stars, plus nine double ultracool dwarf systems. These systems were selected based on common distance criteria. About 90 per cent of the total sample has proper motions available and 73 per cent of the systems also satisfy a common proper motion criterion. The sample of ultracool candidates was taken from the Dark Energy Survey (DES) and the candidate stellar primaries are from Gaia DR2 and DES data. We compute chance alignment probabilities in order to assess the physical nature of each pair. We find that 174 candidate pairs with Gaia DR2 primaries and 81 pairs with a DES star as a primary have chance alignment probabilities < 5. Only nine candidate systems composed of two UCDs were identified. The sample of candidate multiple systems is made up of five triple systems and one quadruple system. The majority of the UCDs found in binaries and multiples are of early L type and the typical wide binary fraction over the L spectral types is 2-4. Our sample of candidate wide binaries with UCDs as secondaries constitutes a substantial increase over the known number of such systems, which are very useful to constrain the formation and evolution of UCDs., Funding for the DES Projects has been provided by the US Department of Energy, the US National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciência, Tecnologia e Inovação, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the DES. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenössische Technische Hochschule (ETH) Zürich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciències de l’Espai (IEEC/CSIC), the Institut de Física d’Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universität München and the associated Excellence Cluster Universe, the University of Michigan, the NSF’s National Optical-Infrared Astronomy Research Laboratory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M University, and the OzDES Membership Consortium. Based in part on observations at Cerro Tololo Inter-American Observatory, NSF’s National Optical-Infrared Astronomy Research Laboratory, which is operated by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The DES data management system is supported by the National Science Foundation under Grant Numbers AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2015-71825, ESP2015-66861, FPA2015-68048, SEV-2016-0588, SEV-2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478. We acknowledge support from the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO), through project number CE110001020, and the Brazilian Instituto Nacional de Ciência e Tecnologia (INCT) e-Universe (CNPq grant 465376/2014-2). This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the US Department of Energy, Office of Science, Office of High Energy Physics. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, and NEOWISE, which is a project of the Jet Propulsion Laboratory/California Institute of Technology. WISE and NEOWISE are funded by the National Aeronautics and Space Administration. The analysis presented here is based on observations obtained as part of the VHS, ESO Programme, 179.A-2010 (PI: McMahon). This paper has gone through internal review by the DES collaboration. ACR acknowledges financial support provided by the PAPDRJ CAPES/FAPERJ Fellowship and by ‘Unidad de Excelencia María de Maeztu de CIEMAT – Física de Partículas (Proyecto MDM)’
- Published
- 2020
38. Dark Energy Survey Year 3 Results: Covariance Modelling and its Impact on Parameter Estimation and Quality of Fit
- Author
-
R. Buchs, Jochen Weller, Samuel Hinton, G. Tarle, Marco Raveri, G. Gutierrez, Ian Harrison, A. Troja, J. Prat, Alexandra Amon, Y. Omori, H. Camacho, Brian Yanny, V. Scarpine, J. McCullough, Josh Frieman, M. Smith, M. Costanzi, Bhuvnesh Jain, I. Sevilla-Noarbe, Keith Bechtol, Daniel Gruen, David J. Brooks, M. Soares-Santos, Sunayana Bhargava, Ramon Miquel, Rogerio Rosenfeld, D. L. Hollowood, S. Serrano, Felipe Menanteau, Carlos Solans Sanchez, T. N. Varga, N. Weaverdyck, L. N. da Costa, M. Gatti, Ofer Lahav, Xiao Fang, A. Campos, J. DeRose, E. Suchyta, August E. Evrard, I. Ferrero, Matt J. Jarvis, J. Myles, David J. James, D. W. Gerdes, A. Roodman, Tommaso Giannantonio, Elisabeth Krause, Pablo Fosalba, Alex Drlica-Wagner, Tim Eifler, H. T. Diehl, Robert Morgan, Javier Sanchez, Dragan Huterer, Eli S. Rykoff, Marcos Lima, J. Carretero, J. Cordero, Erin Sheldon, C. Doux, Chun-Hao To, V. Terra, E. J. Sanchez, S. Samuroff, David Bacon, F. Paz-Chinchón, Martin Crocce, O. Alves, A. Carnero Rosell, R. D. Wilkinson, Michael Troxel, L. F. Secco, S. Pandey, J. Muir, A. Choi, K. Honscheid, Jack Elvin-Poole, Kyler Kuehn, A. Alarcon, Niall MacCrann, A. A. Plazas, G. Giannini, C. Davis, S. Everett, Scott Dodelson, Santiago Avila, Chihway Chang, S. Desai, J. Gschwend, Antonella Palmese, Gary Bernstein, Maria E. S. Pereira, M. A. G. Maia, M. Rodriguez-Monroy, A. Porredon, E. Baxter, E. Bertin, W. G. Hartley, Juan Garcia-Bellido, Oliver Friedrich, M. Carrasco Kind, F. Andrade-Oliveira, Enrique Gaztanaga, R. Cawthon, Daniel Thomas, F. Elsner, J. De Vicente, Michel Aguena, D. L. Burke, Robert A. Gruendl, Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), DES, Ministerio de Ciencia, Innovación y Universidades (España), Ministerio de Economía y Competitividad (España), European Commission, Generalitat de Catalunya, Instituto Nacional de Ciência e Tecnologia (Brasil), University of Cambridge, Universidade Estadual Paulista (UNESP), Laboratório Interinstitucional de e-Astronomia - LIneA, University of Michigan, Fermi National Accelerator Laboratory, University of Arizona, California Institute of Technology, University of Chicago, Stanford University, University of Hawaii, Ohio State University, Institut d'Estudis Espacials de Catalunya (IEEC), CSIC, SLAC National Accelerator Laboratory, National Center for Supercomputing Applications, Medioambientales y Tecnológicas (CIEMAT), University of Portsmouth, University of Sussex, Princeton University, University of Southampton, Oak Ridge National Laboratory, Max Planck Institute for Extraterrestrial Physics, Ludwig-Maximilians Universität München, Friedrich, O., Andrade-Oliveira, F., Camacho, H., Alves, O., Rosenfeld, R., Sanchez, J., Fang, X., Eifler, T. F., Krause, E., Chang, C., Omori, Y., Amon, A., Baxter, E., Elvin-Poole, J., Huterer, D., Porredon, A., Prat, J., Terra, V., Troja, A., Alarcon, A., Bechtol, K., Bernstein, G. M., Buchs, R., Campos, A., Carnero Rosell, A., Carrasco Kind, M., Cawthon, R., Choi, A., Cordero, J., Crocce, M., Davis, C., Derose, J., Diehl, H. T., Dodelson, S., Doux, C., Drlica-Wagner, A., Elsner, F., Everett, S., Fosalba, P., Gatti, M., Giannini, G., Gruen, D., Gruendl, R. A., Harrison, I., Hartley, W. G., Jain, B., Jarvis, M., Maccrann, N., Mccullough, J., Muir, J., Myles, J., Pandey, S., Raveri, M., Roodman, A., Rodriguez-Monroy, M., Rykoff, E. S., Samuroff, S., Sánchez, C., Secco, L. F., Sevilla-Noarbe, I., Sheldon, E., Troxel, M. A., Weaverdyck, N., Yanny, B., Aguena, M., Avila, S., Bacon, D., Bertin, E., Bhargava, S., Brooks, D., Burke, D. L., Carretero, J., Costanzi, M., da Costa, L. N., Pereira, M. E. S., De Vicente, J., Desai, S., Evrard, A. E., Ferrero, I., Frieman, J., García-Bellido, J., Gaztanaga, E., Gerdes, D. W., Giannantonio, T., Gschwend, J., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Kuehn, K., Lahav, O., Lima, M., Maia, M. A. G., Menanteau, F., Miquel, R., Morgan, R., Palmese, A., Paz-Chinchón, F., Plazas, A. A., Sanchez, E., Scarpine, V., Serrano, S., Soares-Santos, M., Smith, M., Suchyta, E., Tarle, G., Thomas, D., To, C., Varga, T. N., Weller, J., Wilkinson, R. D., and Des, Collaboration
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Gaussian ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,7. Clean energy ,symbols.namesake ,0103 physical sciences ,Applied mathematics ,010303 astronomy & astrophysics ,Physics ,010308 nuclear & particles physics ,Equation of state (cosmology) ,Estimation theory ,Covariance matrix ,Astronomy and Astrophysics ,Covariance ,cosmology: observations ,large-scale structure of Universe ,observations [cosmology] ,Weighting ,Space and Planetary Science ,symbols ,Dark energy ,Trispectrum ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Cosmology and Nongalactic Astrophysics ,observation [cosmology] - Abstract
Friedrich, O., et al. DES Collaboration, We describe and test the fiducial covariance matrix model for the combined two-point function analysis of the Dark Energy Survey Year 3 (DES-Y3) data set. Using a variety of new ansatzes for covariance modelling and testing, we validate the assumptions and approximations of this model. These include the assumption of Gaussian likelihood, the trispectrum contribution to the covariance, the impact of evaluating the model at a wrong set of parameters, the impact of masking and survey geometry, deviations from Poissonian shot noise, galaxy weighting schemes, and other sub-dominant effects. We find that our covariance model is robust and that its approximations have little impact on goodness of fit and parameter estimation. The largest impact on best-fitting figure-of-merit arises from the so-called fsky approximation for dealing with finite survey area, which on average increases the χ2 between maximum posterior model and measurement by 3.7 per cent (Δχ2 ≈ 18.9). Standard methods to go beyond this approximation fail for DES-Y3, but we derive an approximate scheme to deal with these features. For parameter estimation, our ignorance of the exact parameters at which to evaluate our covariance model causes the dominant effect. We find that it increases the scatter of maximum posterior values for Ωm and σ8 by about 3 per cent and for the dark energy equation-of-state parameter by about 5 per cent., The DES data management system is supported by the National Science Foundation under grant numbers AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2015-71825, ESP2015-66861, FPA2015-68048, SEV-2016-0588, SEV-2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478. We acknowledge support from the Brazilian Instituto Nacional de Ciência e Tecnologia (INCT) e-Universe (CNPq grant 465376/2014-2). This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
- Published
- 2020
- Full Text
- View/download PDF
39. Robust diffraction-limited near-infrared-to-near-ultraviolet wide-field imaging from stratospheric balloon-borne platforms—Super-pressure Balloon-borne Imaging Telescope performance
- Author
-
M. Galloway, Lun Li, Jacqueline McCleary, Ellen Sirks, Steven J. Benton, Paul Clark, Richard Massey, L. Javier Romualdez, E. M. Huff, Ajay Gill, W. C. Jones, J. Hartley, Jason S.-Y. Leung, Susan Redmond, Tim Eifler, Mathilde Jauzac, Thuy Vy T. Luu, Aurelien A. Fraisse, Johanna Nagy, Christopher J. Damaren, C. Barth Netterfield, James Mullaney, Jürgen Schmoll, Sut Ieng Tam, D. Lagattuta, Mohamed M. Shaaban, Anthony M. Brown, Bradley Holder, and Jason Rhodes
- Subjects
010302 applied physics ,Physics ,business.industry ,Near-infrared spectroscopy ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Tracking (particle physics) ,Rotation ,01 natural sciences ,Cosmology ,010305 fluids & plasmas ,law.invention ,Telescope ,Optics ,Cardinal point ,Transmission (telecommunications) ,law ,Stellar dynamics ,0103 physical sciences ,business ,Instrumentation - Abstract
At a fraction of the total cost of an equivalent orbital mission, scientific balloon-borne platforms, operating above 99.7% of the Earth’s atmosphere, offer attractive, competitive, and effective observational capabilities—namely, space-like seeing, transmission, and backgrounds—which are well suited for modern astronomy and cosmology. The Super-pressure Balloon-borne Imaging Telescope (SUPERBIT) is a diffraction-limited, wide-field, 0.5 m telescope capable of exploiting these observing conditions in order to provide exquisite imaging throughout the near-infrared to near-ultraviolet. It utilizes a robust active stabilization system that has consistently demonstrated a 48 mas 1σ sky-fixed pointing stability over multiple 1 h observations at float. This is achieved by actively tracking compound pendulations via a three-axis gimballed platform, which provides sky-fixed telescope stability at < 500 mas and corrects for field rotation, while employing high-bandwidth tip/tilt optics to remove residual disturbances across the science imaging focal plane. SUPERBIT’s performance during the 2019 commissioning flight benefited from a customized high-fidelity science-capable telescope designed with an exceptional thermo- and opto-mechanical stability as well as a tightly constrained static and dynamic coupling between high-rate sensors and telescope optics. At the currently demonstrated level of flight performance, SUPERBIT capabilities now surpass the science requirements for a wide variety of experiments in cosmology, astrophysics, and stellar dynamics.
- Published
- 2020
40. The SPTpol Extended Cluster Survey
- Author
-
Shahab Joudaki, M. Costanzi, Matt Dobbs, C. L. Chang, Carole Tucker, E. Bertin, Dale Li, Michael McDonald, A. E. Lowitz, T. M. Crawford, Mark Brodwin, W. B. Everett, A. Roodman, N. W. Halverson, J. Carretero, Santiago Serrano, G. Khullar, Elizabeth George, Adam Anderson, M. Smith, James A. Beall, C. Sievers, Nathan Whitehorn, Valentine Novosad, Marcelle Soares-Santos, Devon L. Hollowood, Volodymyr Yefremenko, C. Pryke, D. Gruen, Nesar Ramachandra, Gensheng Wang, Antonella Palmese, Steven W. Allen, John P. Nibarger, T. Veach, J. D. Hrubes, A. K. Romer, Ramon Miquel, H. T. Diehl, G. I. Noble, W. L. K. Wu, Niall MacCrann, Juan Garcia-Bellido, L. N. da Costa, Christian L. Reichardt, Federico Bianchini, B. Flaugher, Jason E. Austermann, A. A. Plazas, Jason Gallicchio, K. Honscheid, Santiago Avila, Joshua Montgomery, Amy N. Bender, N. L. Harrington, Robert A. Gruendl, Matthias Klein, A. T. Crites, Sebastian Bocquet, S. Patil, L. M. Mocanu, John E. Carlstrom, A. Carnero Rosell, Peter A. R. Ade, B. Stalder, Tesla E. Jeltema, T. de Haan, E. Buckley-Geer, K. K. Schaffer, K. T. Story, Jeff McMahon, J. Gschwend, Shantanu Desai, Benjamin Floyd, Keith Bechtol, Bradford Benson, Catherine Heymans, Jason W. Henning, Antony A. Stark, Joaquin Vieira, Graeme Smecher, Robert I. Citron, M. L. N. Ashby, Lloyd Knox, M. A. G. Maia, A. Saro, J. P. Dietrich, Chris Blake, T. Natoli, N. P. Kuropatkin, James Annis, J. T. Sayre, Michael D. Gladders, J. L. Marshall, C. Corbett Moran, Keith Vanderlinde, Joseph J. Mohr, Kent D. Irwin, W. L. Holzapfel, Jochen Weller, Jessica Avva, David Parkinson, Johannes Hubmayr, Stephen Padin, Joshua A. Frieman, Felipe Menanteau, Gregory Tarle, Tim Schrabback, Matthew B. Bayliss, Eli S. Rykoff, D. L. Burke, E. J. Sanchez, G. Gutierrez, Lindsey Bleem, N. Huang, A. Gilbert, H. C. Chiang, Yanxi Zhang, Tim Eifler, J. D. Remolina González, Benjamin Saliwanchik, F. Paz-Chinchón, Adrian T. Lee, D. W. Gerdes, D. H. Brooks, S. S. Meyer, G. P. Holder, Guillaume Mahler, M. Carrasco Kind, J. E. Ruhl, J. De Vicente, E. Suchyta, Nikhel Gupta, David James, C. Lidman, Keren Sharon, A. Nadolski, Peter Melchior, Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), SPT, DES, Bleem, L. E., Bocquet, S., Stalder, B., Gladders, M. D., Ade, P. A. R., Allen, S. W., Anderson, A. J., Annis, J., Ashby, M. L. N., Austermann, J. E., Avila, S., Avva, J. S., Bayliss, M., Beall, J. A., Bechtol, K., Bender, A. N., Benson, B. A., Bertin, E., Bianchini, F., Blake, C., Brodwin, Brooks, D., Buckley-Geer, E., Burke, D. L., Carlstrom, J. E., Rosell, A. Carnero, Carrasco Kind, M., Carretero, J., Chang, C. L., Chiang, H. C., Citron, R., Moran, C. Corbett, Costanzi, M., Crawford, T. M., Crites, A. T., da Costa, L. N., de Haan, T., De Vicente, J., Desai, S., Diehl, H. T., Dietrich, J. P., Dobbs, M. A., Eifler, T. F., Everett, W., Flaugher, B., Floyd, B., Frieman, J., Gallicchio, J., García-Bellido, J., George, E. M., Gerdes, D. W., Gilbert, A., Gruen, D., Gruendl, R. A., Gschwend, J., Gupta, N., Gutierrez, G., Halverson, N. W., Harrington, N., Henning, J. W., Heymans, C., Holder, G. P., Hollowood, D. L., Holzapfel, W. L., Honscheid, K., Hrubes, J. D., Huang, N., Hubmayr, J., Irwin, K. D., James, D. J., Jeltema, T., Joudaki, S., Khullar, G., Klein, M., Knox, L., Kuropatkin, N., Lee, A. T., Li, D., Lidman, C., Lowitz, A., Maccrann, N., Mahler, G., Maia, M. A. G., Marshall, J. L., Mcdonald, M., Mcmahon, J. J., Melchior, P., Menanteau, F., Meyer, S. S., Miquel, R., Mocanu, L. M., Mohr, J. J., Montgomery, J., Nadolski, A., Natoli, T., Nibarger, J. P., Noble, G., Novosad, V., Padin, S., Palmese, A., Parkinson, D., Patil, S., Paz-Chinchón, F., Plazas, A. A., Pryke, C., Ramachandra, N. S., Reichardt, C. L., Remolina González, J. D., Romer, A. K., Roodman, A., Ruhl, J. E., Rykoff, E. S., Saliwanchik, B. R., Sanchez, E., Saro, A., Sayre, J. T., Schaffer, K. K., Schrabback, T., Serrano, S., Sharon, K., Sievers, C., Smecher, G., Smith, M., Soares-Santos, M., Stark, A. A., Story, K. T., Suchyta, E., Tarle, G., Tucker, C., Vanderlinde, K., Veach, T., Vieira, J. D., Wang, G., Weller, J., Whitehorn, N., Wu, W. L. K., Yefremenko, V., Zhang, Y., National Science Foundation (US), National Aeronautics and Space Administration (US), Department of Energy (US), Ministerio de Ciencia e Innovación (España), Science and Technology Facilities Council (UK), University of Illinois, University of Chicago, Texas A&M University, Financiadora de Estudos e Projetos (Brasil), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional das Fundaçôes Estaduais de Amparo à Pesquisa (Brasil), Ministério da Ciência, Tecnologia e Inovação (Brasil), German Research Foundation, Argonne National Laboratory (US), Canadian Institute for Advanced Research, Fonds de Recherche du Québec, Max Planck Society, Alexander von Humboldt Foundation, European Commission, Federal Ministry of Economics and Technology (Germany), Australian Research Council, Australian Astronomical Observatory, California Institute of Technology, and Generalitat de Catalunya
- Subjects
Physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,010308 nuclear & particles physics ,Strong gravitational lensing ,Cosmic microwave background ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,01 natural sciences ,7. Clean energy ,Galaxy ,Cosmology ,Gravitational lens ,Space and Planetary Science ,Large-scale structure of the universe ,0103 physical sciences ,astro-ph.CO ,Cluster (physics) ,Unified Astronomy Thesaurus concepts: Galaxy clusters ,Cluster sampling ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,010303 astronomy & astrophysics ,Galaxy cluster ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Full author list: L. E. Bleem, S. Bocquet, B. Stalder, M. D. Gladders, P. A. R. Ade, S. W. Allen, A. J. Anderson, J. Annis, M. L. N. Ashby, J. E. Austermann, S. Avila, J. S. Avva, M. Bayliss, J. A. Beall, K. Bechtol, A. N. Bender, B. A. Benson, E. Bertin, F. Bianchini, C. Blake, M. Brodwin, D. Brooks, E. Buckley-Geer, D. L. Burke, J. E. Carlstrom, A. Carnero Rosell, M. Carrasco Kind, J. Carretero, C. L. Chang, H. C. Chiang, R. Citron, C. Corbett Moran, M. Costanzi, T. M. Crawford, A. T. Crites, L. N. da Costa, T. de Haan, J. De Vicente, S. Desai, H. T. Diehl, J. P. Dietrich, M. A. Dobbs, T. F. Eifler, W. Everett, B. Flaugher, B. Floyd, J. Frieman, J. Gallicchio, J. García-Bellido, E. M. George, D. W. Gerdes, A. Gilbert, D. Gruen, R. A. Gruendl, J. Gschwend, N. Gupta, G. Gutierrez, N. W. Halverson, N. Harrington, J. W. Henning, C. Heymans, G. P. Holder, D. L. Hollowood, W. L. Holzapfel, K. Honscheid, J. D. Hrubes, N. Huang, J. Hubmayr, K. D. Irwin, D. J. James, T. Jeltema, S. Joudaki, G. Khullar, M. Klein, L. Knox, N. Kuropatkin, A. T. Lee, D. Li, C. Lidman, A. Lowitz, N. MacCrann, G. Mahler, M. A. G. Maia, J. L. Marshall, M. McDonald, J. J. McMahon, P. Melchior, F. Menanteau, S. S. Meyer, R. Miquel, L. M. Mocanu, J. J. Mohr, J. Montgomery, A. Nadolski, T. Natoli, J. P. Nibarger, G. Noble, V. Novosad, S. Padin, A. Palmese, D. Parkinson, S. Patil, F. Paz-Chinchón, A. A. Plazas, C. Pryke, N. S. Ramachandra, C. L. Reichardt, J. D. Remolina González, A. K. Romer, A. Roodman, J. E. Ruhl, E. S. Rykoff, B. R. Saliwanchik, E. Sanchez, A. Saro, J. T. Sayre, K. K. Schaffer, T. Schrabback, S. Serrano, K. Sharon, C. Sievers, G. Smecher, M. Smith, M. Soares-Santos, A. A. Stark, K. T. Story, E. Suchyta, G. Tarle, C. Tucker, K. Vanderlinde, T. Veach, J. D. Vieira, G. Wang, J. Weller, N. Whitehorn, W. L. K. Wu, V. Yefremenko, and Y. Zhang, We describe the observations and resultant galaxy cluster catalog from the 2770 deg2 SPTpol Extended Cluster Survey (SPT-ECS). Clusters are identified via the Sunyaev-Zel'dovich (SZ) effect and confirmed with a combination of archival and targeted follow-up data, making particular use of data from the Dark Energy Survey (DES). With incomplete follow-up we have confirmed as clusters 244 of 266 candidates at a detection significance ξ ≥ 5 and an additional 204 systems at 4 < ξ < 5. The confirmed sample has a median mass of M500c ~ 4.4 ¿ 1014 M☉ h70 -1 and a median redshift of z = 0.49, and we have identified 44 strong gravitational lenses in the sample thus far. Radio data are used to characterize contamination to the SZ signal; the median contamination for confirmed clusters is predicted to be ∼1% of the SZ signal at the ξ > 4 threshold, and 10% of their measured SZ flux. We associate SZ-selected clusters, from both SPT-ECS and the SPT-SZ survey, with clusters from the DES redMaPPer sample, and we find an offset distribution between the SZ center and central galaxy in general agreement with previous work, though with a larger fraction of clusters with significant offsets. Adopting a fixed Planck-like cosmology, we measure the optical richness-SZ mass (l - M) relation and find it to be 28% shallower than that from a weak-lensing analysis of the DES data-a difference significant at the 4σ level-with the relations intersecting at λ = 60. The SPT-ECS cluster sample will be particularly useful for studying the evolution of massive clusters and, in combination with DES lensing observations and the SPT-SZ cluster sample, will be an important component of future cosmological analyses., This work was performed in the context of the South Pole Telescope scientific program. SPT is supported by the National Science Foundation through grant PLR-1248097. Partial support is also provided by the NSF Physics Frontier Center grant PHY-0114422 to the Kavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation, and the Gordon and Betty Moore Foundation grant GBMF 947 to the University of Chicago. This work is also supported by the U.S. Department of Energy. PISCO observations are supported by NSF AST-1814719. Work at Argonne National Lab is supported by UChicago Argonne LLC, operator of Argonne National Laboratory (Argonne). Argonne, a U.S. Department of Energy Office of Science Laboratory, is operated under contract No. DE-AC02- 06CH11357. We also acknowledge support from the Argonne Center for Nanoscale Materials. M.G. and L.B. acknowledge partial support from HST-GO-15307.001. B.B. is supported by the Fermi Research Alliance LLC under contract No. De-AC02- 07CH11359 with the U.S. Department of Energy. The CU Boulder group acknowledges support from NSF AST-0956135. The McGill authors acknowledge funding from the Natural Sciences and Engineering Research Council of Canada, Canadian Institute for Advanced Research, and the Fonds de Recherche du Québec Nature et technologies. The UCLA authors acknowledge support from NSF AST-1716965 and CSSI-1835865. The Stanford/SLAC group acknowledges support from the U.S. Department of Energy under contract No. DE-AC02-76SF00515. A.S. is supported by the ERC-StG “ClustersXCosmo” grant agreement 716762 and by the FARE-MIUR grant “ClustersXEuclid” R165SBKTMA. C.H. acknowledges support from the Max Planck Society and the Alexander von Humboldt Foundation, in the framework of the Max Planck-Humboldt Research Award endowed by the Federal Ministry of Education and Research, in addition to support from the European Research Council under grant No. 647112. S.J. acknowledges support from the Beecroft Trust and ERC 693024. T.S. acknowledges support from the German Federal Ministry of Economics and Technology (BMWi) provided through DLR under projects 50 OR 1610 and 50 OR 1803, as well as support from the Deutsche Forschungsgemeinschaft, DFG, under project SCHR 1400/3-1. The Melbourne authors acknowledge support from the Australian Research Council’s Discovery Projects scheme (DP150103208). The 2dFLenS survey is based on data acquired through the Australian Astronomical Observatory, under program A/2014B/008. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at The Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciência, Tecnologia e Inovação, the Deutsche Forschungsgemeinschaft, and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenössische Technische Hochschule (ETH) Zürich, Fermi National Accelerator Laboratory, the University of Illinois at UrbanaChampaign, the Institut de Ciències de l’Espai (IEEC/CSIC), the Institut de Física d’Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universität München and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M University, and the OzDES Membership Consortium. Based in part on observations at Cerro Tololo InterAmerican Observatory, National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The DES data management system is supported by the National Science Foundation under grant Nos. AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2015-71825, ESP2015-66861, FPA2015-68048, SEV2016-0588, SEV-2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007- 2013), including ERC grant agreements 240672, 291329, and 306478. We acknowledge support from the Brazilian Instituto Nacional de Ciência e Tecnologia (INCT) e-Universe (CNPq grant 465376/2014-2). This manuscript has been authored by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Pan-STARRS1 Surveys (PS1) and the PS1 public science archive have been made possible through contributions by the Institute for Astronomy, the University of Hawaii, the Pan-STARRS Project Office, the Max-Planck Society and its participating institutes, the Max Planck Institute for Astronomy, Heidelberg and the Max Planck Institute for Extraterrestrial Physics, Garching, Johns Hopkins University, Durham University, the University of Edinburgh, the Queen’s University Belfast, the Harvard-Smithsonian Center for Astrophysics, the Las Cumbres Observatory Global Telescope Network Incorporated, the National Central University of Taiwan, the Space Telescope Science Institute, the National Aeronautics and Space Administration under grant No. NNX08AR22G issued through the Planetary Science Division of the NASA Science Mission Directorate, the National Science Foundation grant No. AST1238877, the University of Maryland, Eotvos Lorand University (ELTE), the Los Alamos National Laboratory, and the Gordon and Betty Moore Foundation
- Published
- 2020
41. Optical follow-up of gravitational wave triggers with DECam during the first two LIGO/VIRGO observing runs
- Author
-
R. E. Butler, D. L. Burke, F. Paz-Chinchón, Keith Bechtol, Brian Yanny, Ken Herner, William G. Hartley, M. Smith, N. P. Kuropatkin, D. W. Gerdes, Masao Sako, Eric H. Neilsen, I. Sevilla-Noarbe, G. Gutierrez, Alex Drlica-Wagner, Edo Berger, L. N. da Costa, S. Desai, H. S. Chen, Ben Farr, Marcelle Soares-Santos, James Annis, Elisabeth Krause, Huan Lin, M. Carrasco-Kind, G. Tarle, A. A. Plazas, K. Honscheid, Pablo Fosalba, Philip S. Cowperthwaite, M. A. G. Maia, Daniel E. Holz, J. Marriner, Nora Sherman, David James, Alejandro Garcia, V. Scarpine, J. De Vicente, Antonella Palmese, Douglas L. Tucker, Felipe Menanteau, Enrique Gaztanaga, Robert A. Gruendl, E. Suchyta, Tenglin Li, A. Carnero Rosell, Santiago Avila, Ramon Miquel, Peter K. G. Williams, M. Sauseda, William Wester, Kyler Kuehn, D. J. Brout, Ofer Lahav, J. Gschwend, Christopher J. Conselice, E. Buckley-Geer, Devon L. Hollowood, Juan Garcia-Bellido, E. Bertin, M. S. Schubnell, J. L. Marshall, Thomas Matheson, Peter Doel, H. T. Diehl, M. S. S. Gill, S. Everett, Daniel Scolnic, Marco A. P. Lima, Edward R. Cook, Santiago Serrano, Yanxi Zhang, Tim Eifler, Richard Kessler, Flavia Sobreira, D. A. Finley, J. Carretero, Tamara M. Davis, M. March, Sahar S. Allam, Zoheyr Doctor, N. Glaeser, Joshua A. Frieman, R. J. Foley, E. J. Sanchez, Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), DECam, National Science Foundation (US), Department of Energy (US), University of Illinois, Stanford University, New York State Office of Science, Technology and Academic Research, Lawrence Berkeley National Laboratory, University of Pennsylvania, The Ohio State University, University of Chicago, University of Michigan, Texas A&M University, University of Portsmouth, Science and Technology Facilities Council (UK), University College London, European Research Council, University of Nottingham, University of Sussex, German Research Foundation, Ministerio de Economía y Competitividad (España), Conselho Nacional de Desenvolvimento Científico e Tecnológico (Brasil), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, and Financiadora de Estudos e Projetos (Brasil)
- Subjects
cosmological model ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Context (language use) ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,7. Clean energy ,Cosmology ,Gravitational waves ,General Relativity and Quantum Cosmology ,star ,0103 physical sciences ,supernova ,black hole ,optical ,Software and its engineering software infrastructure ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,LIGO ,cosmic string ,neutron star ,dark energy ,010303 astronomy & astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Astrophysics::Galaxy Astrophysics ,Physics ,010308 nuclear & particles physics ,Gravitational wave ,Astrophysics::Instrumentation and Methods for Astrophysics ,gravitational radiation ,Astronomy ,imaging ,Astronomy and Astrophysics ,trigger ,Computer Science Applications ,Black hole ,Neutron star ,Supernova ,electromagnetic ,VIRGO ,13. Climate action ,Space and Planetary Science ,Grid computing ,Dark energy ,Astrophysics - Instrumentation and Methods for Astrophysics ,signature - Abstract
Gravitational wave (GW) events detectable by LIGO and Virgo have several possible progenitors, including black hole mergers, neutron star mergers, black hole–neutron star mergers, supernovae, and cosmic string cusps. A subset of GW events is expected to produce electromagnetic (EM) emission that, once detected, will provide complementary information about their astrophysical context. To that end, the LIGO–Virgo Collaboration (LVC) sends GW candidate alerts to the astronomical community so that searches for their EM counterparts can be pursued. The DESGW group, consisting of members of the Dark Energy Survey (DES), the LVC, and other members of the astronomical community, uses the Dark Energy Camera (DECam) to perform a search and discovery program for optical signatures of LVC GW events. DESGW aims to use a sample of GW events as standard sirens for cosmology. Due to the short decay timescale of the expected EM counterparts and the need to quickly eliminate survey areas with no counterpart candidates, it is critical to complete the initial analysis of each night's images as quickly as possible. We discuss our search area determination, imaging pipeline, and candidate selection processes. We review results from the DESGW program during the first two LIGO–Virgo observing campaigns and introduce other science applications that our pipeline enables., Funding for the DES Projects has been provided by the DOE and NSF, MEC/MICINN/MINECO (Spain), STFC, HEFCE, NCSA (UIUC), KICP (U. Chicago), CCAPP (Ohio State), MIFPA (Texas A&M), CNPQ, FAPERJ, FINEP, DFG and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne Lab, UC Santa Cruz, University of Cambridge, CIEMAT-Madrid, University of Chicago, University College London, DES-Brazil Consortium, University of Edinburgh, ETH Zürich, Fermilab, University of Illinois, ICE (IEEC-CSIC), IFAE Barcelona, Lawrence Berkeley Lab, LMU München and the associated Excellence Cluster Universe, University of Michigan, NOAO, University of Nottingham, Ohio State University, University of Pennsylvania, University of Portsmouth, SLAC National Lab, Stanford University, University of Sussex, Texas A&M University, and the OzDES Membership Consortium. Based in part on observations at Cerro Tololo Inter-American Observatory at NSF’s NOIRLab, which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The DES Data Management System is supported by the NSF under Grant Numbers AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2015-71825, ESP2015-88861, FPA2015-68048, and Centro de Excelencia SEV-2016-0588, SEV-2016-0597 and MDM-2015-0509. Research leading to these results has received funding from the ERC under the EU’s 7th Framework Programme including grants ERC 240672, 291329 and 306478. We acknowledge support from the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO) , through project number CE110001020. This research uses services or data provided by the NOAO Science Archive. NOAO is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under a cooperative agreement with the National Science Foundation. This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. Government purposes.
- Published
- 2020
42. OzDES multi-object fibre spectroscopy for the Dark Energy Survey: Results and second data release
- Author
-
Enrique Gaztanaga, C. Lidman, J. Carretero, Tim Eifler, B. E. Tucker, E. Swann, Tamara M. Davis, Lluís Galbany, Sara Webb, J. Gschwend, S. Allam, Robert A. Gruendl, Samuel Hinton, Eli S. Rykoff, J. K. Hoormann, Krzysztof Bolejko, W. G. Hartley, G. Gutierrez, M. E. C. Swanson, Mark Sullivan, Edward Macaulay, Anais Möller, Paul Martini, Michael Schubnell, A. Carnero Rosell, Douglas L. Tucker, Kyler Kuehn, Ryan J. Foley, R. D. Wilkinson, Peter Doel, I. Sevilla-Noarbe, Daniel Scolnic, Andrew J. King, N. Kuropatkin, N. E. Sommer, Bonnie Zhang, Felipe Menanteau, M. Pursiainen, G. Tarle, Zhefu Yu, A. Kremin, Fang Yuan, V. Scarpine, Anthony Carr, M. Carrasco Kind, Sunayana Bhargava, David Parkinson, T. N. Varga, L. N. da Costa, S. A. Uddin, A. R. Walker, Robert C. Nichol, A. Roodman, M. Childress, Daniela Carollo, M. Costanzi, K. Honscheid, Juan Garcia-Bellido, E. Bertin, D. Lagattuta, Antonella Palmese, Jennifer L. Marshall, J. De Vicente, Joshua A. Frieman, M. A. G. Maia, D. Mudd, W. C. Wester, Fiona H. Panther, U. Malik, M. March, Basilio X. Santiago, Geraint F. Lewis, Peter Melchior, Richard Scalzo, J. Annis, Rob Sharp, M. Sako, D. L. Hollowood, S. Serrano, Richard Kessler, P. Wiseman, S. Everett, David J. Brooks, Marcos Lima, E. Suchyta, A. A. Plazas, F. J. Castander, Jacobo Asorey, T. M. C. Abbott, D. J. Brout, Michel Aguena, Huan Lin, J. Calcino, David J. James, Pablo Fosalba, E. J. Sanchez, Karl Glazebrook, Ramon Miquel, F. Paz-Chinchón, M. Smith, Daniel Gruen, Tenglin Li, Santiago Avila, A. G. Kim, Lidman, C., Tucker, B. E., Davis, T. M., Uddin, S. A., Asorey, J., Bolejko, K., Brout, D., Calcino, J., Carollo, D., Carr, A., Childress, M., Hoormann, J. K., Foley, R. J., Galbany, L., Glazebrook, K., Hinton, S. R., Kessler, R., Kim, A. G., King, A., Kremin, A., Kuehn, K., Lagattuta, D., Lewis, G. F., Macaulay, E., Malik, U., March, M., Martini, P., Moller, A., Mudd, D., Nichol, R. C., Panther, F., Parkinson, D., Pursiainen, M., Sako, M., Swann, E., Scalzo, R., Scolnic, D., Sharp, R., Smith, M., Sommer, N. E., Sullivan, M., Webb, S., Wiseman, P., Yu, Z., Yuan, F., Zhang, B., Abbott, T. M. C., Aguena, M., Allam, S., Annis, J., Avila, S., Bertin, E., Bhargava, S., Brooks, D., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Castander, F. J., Costanzi, M., Da Costa, L. N., De Vicente, J., Doel, P., Eifler, T. F., Everett, S., Fosalba, P., Frieman, J., Garcia-Bellido, J., Gaztanaga, E., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hartley, W. G., Hollowood, D. L., Honscheid, K., James, D. J., Kuropatkin, N., T. S., Li, Lima, M., Lin, H., Maia, M. A. G., Marshall, J. L., Melchior, P., Menanteau, F., Miquel, R., Palmese, A., Paz-Chinchon, F., Plazas, A. A., Roodman, A., Rykoff, E. S., Sanchez, E., Santiago, B., Scarpine, V., Schubnell, M., Serrano, S., Sevilla-Noarbe, I., Suchyta, E., Swanson, M. E. C., Tarle, G., Tucker, D. L., Varga, T. N., Walker, A. R., Wester, W., Wilkinson, R. D., Laboratoire de Physique de Clermont (LPC), Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), DES, Department of Energy (US), National Science Foundation (US), Ministerio de Ciencia, Innovación y Universidades (España), Science and Technology Facilities Council (UK), University of Illinois, Kavli Institute for Theoretical Physics, University of Chicago, The Ohio State University, Texas A&M University, Financiadora de Estudos e Projetos (Brasil), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico (Brasil), Ministério da Ciência, Tecnologia e Inovação (Brasil), German Research Foundation, European Commission, Australian Research Council, and Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)
- Subjects
transients: supernovae ,Astrophysics ,dark energy [cosmology] ,01 natural sciences ,7. Clean energy ,law.invention ,cosmology: dark energy ,supermassive black hole [quasars] ,law ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,010303 astronomy & astrophysics ,catalogues ,Physics ,quasars: supermassive black holes ,Astrophysics::Instrumentation and Methods for Astrophysics ,GALÁXIAS ,Supernova ,spectroscopic [techniques] ,Astrophysics::Earth and Planetary Astrophysics ,surveys ,techniques: spectroscopic ,catalogue ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Active galactic nucleus ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Telescope ,supermassive black holessurveys [Quasars] ,0103 physical sciences ,survey ,Spectrograph ,Astrophysics::Galaxy Astrophysics ,STFC ,010308 nuclear & particles physics ,supermassive black holes [quasars] ,RCUK ,Astronomy and Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Galaxy ,Redshift ,Photometry (astronomy) ,13. Climate action ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Dark energy ,Quasars: supermassive black holessurveys ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,supernovae [transients] - Abstract
We present a description of the Australian Dark Energy Survey (OzDES) and summarize the results from its 6 years of operations. Using the 2dF fibre positioner and AAOmega spectrograph on the 3.9-m Anglo-Australian Telescope, OzDES has monitored 771 active galactic nuclei, classified hundreds of supernovae, and obtained redshifts for thousands of galaxies that hosted a transient within the 10 deep fields of the Dark Energy Survey. We also present the second OzDES data release, containing the redshifts of almost 30 000 sources, some as faint as r = 24 mag, and 375 000 individual spectra. These data, in combination with the time-series photometry from the Dark Energy Survey, will be used to measure the expansion history of the Universe out to z ∼1.2 and the masses of hundreds of black holes out to z ∼4. OzDES is a template for future surveys that combine simultaneous monitoring of targets with wide-field imaging cameras and wide-field multi-object spectrographs., Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Fi-nanciadora de Estudos e Projetos, Fundac¸ão Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciência, Tecnologia e Inovação, the Deutsche Forschungsgemein-schaft, and the Collaborating Institutions in the DES. LG was funded by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement no. 839090. The DES data management system is supported by the National Science Foundation under Grant Numbers AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2015-71825, ESP2015-66861, FPA2015-68048, SEV-2016-0588, SEV-2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478. We acknowledge support from the Brazilian Instituto Nacional de Ciência e Tecnologia (INCT) e-Universe (CNPq grant 465376/2014-2). Parts of this research were supported by the Australian Research Council under grants DP160100930, FL180100168, and FT140101270.
- Published
- 2020
43. First cosmology results using type Ia supernovae from the Dark Energy Survey: the effect of host galaxy properties on supernova luminosity
- Author
-
Geraint F. Lewis, C. Frohmaier, David J. Brooks, Samuel Hinton, G. Gutierrez, Sunayana Bhargava, Jennifer L. Marshall, Brad E. Tucker, Eli S. Rykoff, Michel Aguena, A. R. Walker, Josh Frieman, Mark Sullivan, B. Flaugher, Elisabeth Krause, A. Carnero Rosell, M. Pursiainen, G. Tarle, R. R. Gupta, Tim Eifler, D. L. Burke, David J. James, Lluís Galbany, M. E. C. Swanson, Michael Schubnell, Pablo Fosalba, E. Macaulay, R. C. Thomas, S. Allam, Robert A. Gruendl, M. Carrasco Kind, I. Sevilla-Noarbe, J. De Vicente, Robert C. Nichol, Ramon Miquel, E. Suchyta, C. B. D'Andrea, K. Honscheid, Karl Glazebrook, Douglas L. Tucker, Antonella Palmese, N. Kuropatkin, Kyler Kuehn, M. A. G. Maia, Marcus Lima, P. Wiseman, T. N. Varga, L. N. da Costa, Tamara M. Davis, Juan Garcia-Bellido, Daniela Carollo, Peter Melchior, Peter Nugent, Claudia P. Gutiérrez, Felipe Menanteau, Daniel Scolnic, M. Costanzi, A. Roodman, M. Vincenzi, Enrique Gaztanaga, Ryan J. Foley, V. Scarpine, S. Everett, M. Sako, D. L. Hollowood, S. Serrano, Richard Kessler, A. A. Plazas, L. Kelsey, D. J. Brout, W. G. Hartley, N. E. Sommer, A. K. Romer, Paul Martini, F. Paz-Chinchón, M. Smith, Daniel Gruen, Anais Möller, E. Bertin, Peter Doel, H. T. Diehl, Niall MacCrann, J. Gschwend, C. Lidman, E. Swann, Daniel Thomas, E. Buckley-Geer, Santiago Avila, S. Desai, T. M. C. Abbott, E. J. Sanchez, Laboratoire de Physique de Clermont (LPC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Clermont Auvergne (UCA)-Centre National de la Recherche Scientifique (CNRS), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), DES, Smith, M., Sullivan, M., Wiseman, P., Kessler, R., Scolnic, D., Brout, D., D'Andrea, C. B., Davis, T. M., Foley, R. J., Frohmaier, C., Galbany, L., Gupta, R. R., Gutiérrez, C. P., Hinton, S. R., Kelsey, L., Lidman, C., Macaulay, E., Möller, A., Nichol, R. C., Nugent, P., Palmese, A., Pursiainen, M., Sako, M., Swann, E., Thomas, R. C., Tucker, B. E., Vincenzi, M., Carollo, D., Lewis, G. F., Sommer, N. E., Abbott, T. M. C., Aguena, M., Allam, S., Avila, S., Bertin, E., Bhargava, S., Brooks, D., Buckley-Geer, E., Burke, D. L., Carnero Rosell, A., Carrasco Kind, M., Costanzi, M., da Costa, L. N., De Vicente, J., Desai, S., Diehl, H. T., Doel, P., Eifler, T. F., Everett, S., Flaugher, B., Fosalba, P., Frieman, J., García-Bellido, J., Gaztanaga, E., Glazebrook, K., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hartley, W. G., Hollowood, D. L., Honscheid, K., James, D. J., Krause, E., Kuehn, K., Kuropatkin, N., Lima, M., Maccrann, N., Maia, M. A. G., Marshall, J. L., Martini, P., Melchior, P., Menanteau, F., Miquel, R., Paz-Chinchón, F., Plazas, A. A., Romer, A. K., Roodman, A., Rykoff, E. S., Sanchez, E., Scarpine, V., Schubnell, M., Serrano, S., Sevilla-Noarbe, I., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., Tucker, D. L., Varga, T. N., Walker, A. R., Des, Collaboration, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)
- Subjects
transients: supernovae ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Stellar mass ,astro-ph.GA ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,distance scale ,01 natural sciences ,Cosmology ,Luminosity ,surveys ,supernovae: general ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,survey ,010303 astronomy & astrophysics ,STFC ,Astrophysics::Galaxy Astrophysics ,Physics ,010308 nuclear & particles physics ,Star formation ,Equation of state (cosmology) ,RCUK ,Astronomy and Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Galaxy ,Supernova ,Space and Planetary Science ,cosmology: observations ,Astrophysics of Galaxies (astro-ph.GA) ,astro-ph.CO ,Dark energy ,Astrophysics::Earth and Planetary Astrophysics ,supernovae [transients] ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,general [supernovae] ,observation [cosmology] ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present improved photometric measurements for the host galaxies of 206 spectroscopically confirmed type Ia supernovae discovered by the Dark Energy Survey Supernova Program (DES-SN) and used in the first DES-SN cosmological analysis. Fitting spectral energy distributions to the $griz$ photometric measurements of the DES-SN host galaxies, we derive stellar masses and star-formation rates. For the DES-SN sample, when considering a 5D ($z$, $x_1$, $c$, $\alpha$, $\beta$) bias correction, we find evidence of a Hubble residual `mass step', where SNe Ia in high mass galaxies ($>10^{10} \textrm{M}_{\odot}$) are intrinsically more luminous (after correction) than their low mass counterparts by $\gamma=0.040\pm0.019$mag. This value is larger by $0.031$mag than the value found in the first DES-SN cosmological analysis. This difference is due to a combination of updated photometric measurements and improved star formation histories and is not from host-galaxy misidentification. When using a 1D (redshift-only) bias correction the inferred mass step is larger, with $\gamma=0.066\pm0.020$mag. The 1D-5D $\gamma$ difference for DES-SN is $0.026\pm0.009$mag. We show that this difference is due to a strong correlation between host galaxy stellar mass and the $x_1$ component of the 5D distance-bias correction. To better understand this effect, we include an intrinsic correlation between light-curve width and stellar mass in simulated SN Ia samples. We show that a 5D fit recovers $\gamma$ with $-9$mmag bias compared to a $+2$mmag bias for a 1D fit. This difference can explain part of the discrepancy seen in the data. Improvements in modeling correlations between galaxy properties and SN is necessary to determine the implications for $\gamma$ and ensure unbiased precision estimates of the dark energy equation-of-state as we enter the era of LSST., Comment: 27 pages, 13 figures; Submitted to MNRAS
- Published
- 2020
- Full Text
- View/download PDF
44. Combination of cluster number counts and two-point correlations: Validation on Mock Dark Energy Survey
- Author
-
Eli S. Rykoff, N. Kokron, Eduardo Rozo, Risa H. Wechsler, Hao-Yi Wu, J. DeRose, Chun-Hao To, M. Costanzi, Elisabeth Krause, Maria E. S. Pereira, Tim Eifler, Daniel Gruen, Matthew R. Becker, To, C., Krause, E., Rozo, E., Wu, H., Gruen, D., Derose, J., Rykoff, E. S., Wechsler, R. H., Becker, M. R., Costanzi, M., Eifler, T., Pereira, M. E. S., and Kokron, N.
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Calibration (statistics) ,Posterior probability ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,cosmology: theory ,0103 physical sciences ,Cluster (physics) ,Statistical physics ,cosmological parameters ,Cluster analysis ,010303 astronomy & astrophysics ,Physics ,theory [cosmology] ,010308 nuclear & particles physics ,Covariance matrix ,Astronomy and Astrophysics ,Galaxy ,Determining the number of clusters in a data set ,large-scale structure of Universe ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Space and Planetary Science ,Dark energy ,cosmological parameter - Abstract
We present a method of combining cluster abundances and large-scale two-point correlations, namely galaxy clustering, galaxy--cluster cross-correlations, cluster auto-correlations, and cluster lensing. This data vector yields comparable cosmological constraints to traditional analyses that rely on small-scale cluster lensing for mass calibration. We use cosmological survey simulations designed to resemble the Dark Energy Survey Year One (DES-Y1) data to validate the analytical covariance matrix and the parameter inferences. The posterior distribution from the analysis of simulations is statistically consistent with the absence of systematic biases detectable at the precision of the DES Y1 experiment. We compare the $\chi^2$ values in simulations to their expectation and find no significant difference. The robustness of our results against a variety of systematic effects is verified using a simulated likelihood analysis of a Dark Energy Survey Year 1-like data vectors. This work presents the first-ever end-to-end validation of a cluster abundance cosmological analysis on galaxy catalog-level simulations., Comment: 21 pages, 6 figures, 3 tables. MNRAS accepted
- Published
- 2020
- Full Text
- View/download PDF
45. Dark Energy Survey Year 1 Results: Constraining Baryonic Physics in the Universe
- Author
-
Samuel Hinton, Elisabeth Krause, G. Gutierrez, Matthew R. Becker, Jochen Weller, David James, Matias Carrasco Kind, Marcelle Soares-Santos, E. Rozo, Timothy M. C. Abbott, Rachel Mandelbaum, James Annis, Aurelio Carnero Rosell, Ramon Miquel, Molly E. C. Swanson, D. L. Burke, Dragan Huterer, Hung Jin Huang, Robert A. Gruendl, Pablo Fosalba, E. J. Sanchez, Gary Bernstein, Andrés Plazas Malagón, Ofer Lahav, A. Roodman, Jennifer L. Marshall, C. Sánchez, Will Hartley, Judit Prat, Emmanuel Bertin, K. Romer, Francisco J. Castander, Mathew Smith, Michel Aguena, Santiago Serrano, B. Flaugher, Xiao Fang, I. Sevilla, Marcio A. G. Maia, V. Scarpine, Vivian Miranda, M. Gatti, Josh Frieman, Juan de Vicente, Jack Elvin-Poole, Peter Doel, Mike Jarvis, David J. Brooks, Enrique Gaztanaga, Tim Eifler, Anqi Chen, Luiz N. da Costa, F. Paz-Chinchón, Niall MacCrann, Diehl H. Thomas, Daniel Gruen, Simon Samuroff, J. DeRose, E. Suchyta, Ami Choi, Ben Hoyle, J. Carretero, J. P. Dietrich, Juan Garcia-Bellido, Oliver Friedrich, K. Honscheid, Felipe Menanteau, Gregory Tarle, S. Everett, Sukhdeep Singh, Markus Rau, Michael Troxel, Marcos Lima, Kyler Kuehn, Sarah Bridle, Santiago Avila, Joe Zuntz, Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), DES, UAM. Departamento de Física Teórica, and National Aeronautics and Space Administration (US)
- Subjects
Particle physics ,Large-Scale Structure of Universe ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Cosmic microwave background ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,7. Clean energy ,01 natural sciences ,Cosmology ,symbols.namesake ,cosmology: theory ,0103 physical sciences ,Planck ,cosmological parameters ,010303 astronomy & astrophysics ,Weak gravitational lensing ,Physics ,010308 nuclear & particles physics ,Física ,Astronomy and Astrophysics ,Galaxy ,Baryon ,13. Climate action ,Space and Planetary Science ,symbols ,Dark energy ,Theory [Cosmology] ,Cosmological Parameters ,Baryon acoustic oscillations ,large-scale structure of Universe ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Measurements of large-scale structure are interpreted using theoretical predictions for the matter distribution, including potential impacts of baryonic physics. We constrain the feedback strength of baryons jointly with cosmology using weak lensing and galaxy clustering observables (3$\times$2pt) of Dark Energy Survey (DES) Year 1 data in combination with external information from baryon acoustic oscillations (BAO) and Planck cosmic microwave background polarization. Our baryon modeling is informed by a set of hydrodynamical simulations that span a variety of baryon scenarios; we span this space via a Principal Component (PC) analysis of the summary statistics extracted from these simulations. We show that at the level of DES Y1 constraining power, one PC is sufficient to describe the variation of baryonic effects in the observables, and the first PC amplitude ($Q_1$) generally reflects the strength of baryon feedback. With the upper limit of $Q_1$ prior being bound by the Illustris feedback scenarios, we reach $\sim 20\%$ improvement in the constraint of $S_8=\sigma_8(\Omega_{\rm m}/0.3)^{0.5}=0.788^{+0.018}_{-0.021}$ compared to the original DES 3$\times$2pt analysis. This gain is driven by the inclusion of small-scale cosmic shear information down to 2.5 arcmin, which was excluded in previous DES analyses that did not model baryonic physics. We obtain $S_8=0.781^{+0.014}_{-0.015}$ for the combined DES Y1+Planck EE+BAO analysis with a non-informative $Q_1$ prior. In terms of the baryon constraints, we measure $Q_1=1.14^{+2.20}_{-2.80}$ for DES Y1 only and $Q_1=1.42^{+1.63}_{-1.48}$ for DESY1+Planck EE+BAO, allowing us to exclude one of the most extreme AGN feedback hydrodynamical scenario at more than $2 \sigma$., Comment: 22 pages, 18 figures, 2 tables. accepted to MNRAS. A brief video summary of this paper is available at https://www.youtube.com/watch?v=QbeNwk5papU
- Published
- 2020
- Full Text
- View/download PDF
46. Dark energy survey year 1 results: Cosmological constraints from cluster abundances and weak lensing
- Author
-
Alex Drlica-Wagner, Dragan Huterer, J. Annis, I. Sevilla-Noarbe, Daniel Scolnic, N. Kuropatkin, Tesla E. Jeltema, F. Paz-Chinchón, K. D. Eckert, T. N. Varga, Brian Nord, Adam Mantz, L. N. da Costa, M. Costanzi, M. A. G. Maia, Michel Aguena, E. Suchyta, August E. Evrard, Brian Yanny, Shantanu Desai, A. Alarcon, M. W. G. Johnson, A. K. Romer, J. Carretero, Paul Martini, V. Scarpine, I. Ferrero, Matt J. Jarvis, Tamara M. Davis, Yanxi Zhang, Tim Eifler, Arya Farahi, David James, Z. Zhang, D. W. Gerdes, Joshua A. Frieman, D. Gruen, R. Cawthon, Antonella Palmese, Pablo Fosalba, Carlos Solans Sanchez, D. H. Brooks, A. R. Walker, B. Flaugher, Risa H. Wechsler, P. Rooney, Keith Bechtol, M. Sako, C. Lidman, A. von der Linden, Erin Sheldon, D. L. Hollowood, M. E. C. Swanson, Huan Lin, Sebastian Bocquet, Julian A. Mayers, Steve Kent, J. De Vicente, Martin Crocce, R. D. Wilkinson, D. L. Burke, Daniel Thomas, E. Buckley-Geer, M. Carrasco Kind, S. Everett, Robert C. Nichol, S. Allam, Robert A. Gruendl, R. L. C. Ogando, J. P. Dietrich, Juan Garcia-Bellido, E. Bertin, Marcos Lima, Michael Troxel, Eduardo Rozo, Jack Elvin-Poole, Enrique Gaztanaga, Peter Doel, Peter Melchior, Ofer Lahav, M. Smith, H. T. Diehl, Douglas L. Tucker, Kyler Kuehn, J. Allyn Smith, Paul Giles, David Bacon, Niall MacCrann, Ami Choi, Ben Hoyle, A. Roodman, Markus Rau, Tommaso Giannantonio, J. Gschwend, Gary Bernstein, Hao-Yi Wu, Tenglin Li, Scott Dodelson, S. W. Allen, Santiago Avila, Chihway Chang, M. D. Johnson, Ramon Miquel, A. Bermeo, Elisabeth Krause, Sebastian Grandis, J. Mena-Fernández, Joe Zuntz, Jochen Weller, F. J. Castander, T. M. C. Abbott, Chun-Hao To, E. J. Sanchez, K. Honscheid, Eli S. Rykoff, Richard G. Kron, A. Carnero Rosell, Felipe Menanteau, S. Samuroff, Gregory Tarle, Santiago Serrano, J. DeRose, D. J. Brout, J. Prat, Samuel Hinton, G. Gutierrez, Xi Chen, A. A. Plazas, Sunayana Bhargava, Joseph J. Mohr, A. Saro, Jennifer L. Marshall, W. G. Hartley, M. Gatti, Juan Estrada, Michael Schubnell, Ministerio de Economía y Competitividad (España), Generalitat de Catalunya, European Commission, European Research Council, Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), DES, UAM. Departamento de Física Teórica, Abbott, T. M. C., Aguena, M., Alarcon, A., Allam, S., Allen, S., Annis, J., Avila, S., Bacon, D., Bechtol, K., Bermeo, A., Bernstein, G. M., Bertin, E., Bhargava, S., Bocquet, S., Brooks, D., Brout, D., Buckley-Geer, E., Burke, D. L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Castander, F. J., Cawthon, R., Chang, C., Chen, X., Choi, A., Costanzi, M., Crocce, M., Da Costa, L. N., Davis, T. M., De Vicente, J., Derose, J., Desai, S., Diehl, H. T., Dietrich, J. P., Dodelson, S., Doel, P., Drlica-Wagner, A., Eckert, K., Eifler, T. F., Elvin-Poole, J., Estrada, J., Everett, S., Evrard, A. E., Farahi, A., Ferrero, I., Flaugher, B., Fosalba, P., Frieman, J., Garcia-Bellido, J., Gatti, M., Gaztanaga, E., Gerdes, D. W., Giannantonio, T., Giles, P., Grandis, S., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hartley, W. G., Hinton, S. R., Hollowood, D. L., Honscheid, K., Hoyle, B., Huterer, D., James, D. J., Jarvis, M., Jeltema, T., Johnson, M. W. G., Johnson, M. D., Kent, S., Krause, E., Kron, R., Kuehn, K., Kuropatkin, N., Lahav, O., Li, T. S., Lidman, C., Lima, M., Lin, H., Maccrann, N., Maia, M. A. G., Mantz, A., Marshall, J. L., Martini, P., Mayers, J., Melchior, P., Mena-Fernandez, J., Menanteau, F., Miquel, R., Mohr, J. J., Nichol, R. C., Nord, B., Ogando, R. L. C., Palmese, A., Paz-Chinchon, F., Plazas, A. A., Prat, J., Rau, M. M., Romer, A. K., Roodman, A., Rooney, P., Rozo, E., Rykoff, E. S., Sako, M., Samuroff, S., Sanchez, C., Sanchez, E., Saro, A., Scarpine, V., Schubnell, M., Scolnic, D., Serrano, S., Sevilla-Noarbe, I., Sheldon, E., Smith, J. A., Smith, M., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., To, C., Troxel, M. A., Tucker, D. L., Varga, T. N., Von Der Linden, A., Walker, A. R., Wechsler, R. H., Weller, J., Wilkinson, R. D., Wu, H., Yanny, B., Zhang, Y., Zhang, Z., and Zuntz, J.
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Software_OPERATINGSYSTEMS ,ComputingMethodologies_SIMULATIONANDMODELING ,Cosmic microwave background ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Data_CODINGANDINFORMATIONTHEORY ,01 natural sciences ,XMM-Newton Telescope ,symbols.namesake ,0103 physical sciences ,Hardware_INTEGRATEDCIRCUITS ,Planck ,010303 astronomy & astrophysics ,Weak gravitational lensing ,Galaxy cluster ,Physics ,010308 nuclear & particles physics ,Física ,ComputerSystemsOrganization_PROCESSORARCHITECTURES ,Galaxies ,Cosmos ,Redshift ,Galaxy ,Cosmology ,Dark energy ,symbols ,Baryon acoustic oscillations ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
DES Collaboration: et al., We perform a joint analysis of the counts and weak lensing signal of redMaPPer clusters selected from the Dark Energy Survey (DES) Year 1 dataset. Our analysis uses the same shear and source photometric redshifts estimates as were used in the DES combined probes analysis. Our analysis results in surprisingly low values for S8=σ8(Ωm/0.3)0.5=0.65±0.04, driven by a low matter density parameter, Ωm=0.179+0.031−0.038, with σ8−Ωm posteriors in 2.4σ tension with the DES Y1 3x2pt results, and in 5.6σ with the Planck CMB analysis. These results include the impact of post-unblinding changes to the analysis, which did not improve the level of consistency with other data sets compared to the results obtained at the unblinding. The fact that multiple cosmological probes (supernovae, baryon acoustic oscillations, cosmic shear, galaxy clustering and CMB anisotropies), and other galaxy cluster analyses all favor significantly higher matter densities suggests the presence of systematic errors in the data or an incomplete modeling of the relevant physics. Cross checks with x-ray and microwave data, as well as independent constraints on the observable-mass relation from Sunyaev-Zeldovich selected clusters, suggest that the discrepancy resides in our modeling of the weak lensing signal rather than the cluster abundance. Repeating our analysis using a higher richness threshold (λ≥30) significantly reduces the tension with other probes, and points to one or more richness-dependent effects not captured by our model., The DES data management system is supported by the National Science Foundation under Grants No. AST-1138766 and No. AST-1536171. The DES participants from Spanish institutions are partially supported by MINECO under Grants No. AYA2015-71825, No. ESP2015-66861, No. FPA2015-68048, No. SEV2016-0588, No. SEV-2016-0597, and No. MDM-2015-0509, some of which include ERDF funds from the European Union. I. F. A. E. is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013) including ERC Grant agreements No. 240672, No. 291329, and No. 306478. We acknowledge support from the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO), through Project No. CE110001020. This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DEAC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. M. C. and A. S. are supported by the ERC-StG “ClustersXCosmo” Grant agreement No. 716762. A. S. is supported by the FAREMIUR grant “ClustersXEuclid”. E. R. was supported by the DOE Grant No. DE-SC0015975, by the Sloan Foundation, Grant No. FG-2016-6443, and the Cottrell Scholar program of the Research Corporation for Science Advancement. This research used simulations that were performed resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract No. DEAC02-05CH11231.
- Published
- 2020
47. First Cosmology Results using Supernovae Ia from the Dark Energy Survey: Survey Overview, Performance, and Supernova Spectroscopy
- Author
-
J. Calcino, David J. James, Bruce A. Bassett, R. L. C. Ogando, C. B. D'Andrea, Christopher J. Miller, R. R. Gupta, Tim Eifler, Juan Garcia-Bellido, Jennifer L. Marshall, Karl Glazebrook, Lluís Galbany, M. D. Johnson, Douglas L. Tucker, Kyler Kuehn, WeiKang Zheng, Daniel Scolnic, H. T. Diehl, Robert P. Kirshner, W. G. Hartley, Ramon Miquel, Felipe Menanteau, B. P. Thomas, Tenglin Li, R. C. Wolf, J. Lasker, Ryan J. Foley, Santiago Avila, Geraint F. Lewis, E. Bertin, Santiago González-Gaitán, J. K. Hoormann, E. Kasai, Mark Sullivan, Melissa L. Graham, C. Davis, M. Pursiainen, G. Tarle, Carlos E. Cunha, W. C. Wester, Eric H. Neilsen, J. Gschwend, Daniel Muthukrishna, Gary Bernstein, N. E. Sommer, Peter Nugent, C. Frohmaier, David Goldstein, Samuel Hinton, Alejandro Clocchiatti, Bonnie Zhang, A. K. Romer, Daniela Carollo, M. Carrasco Kind, J. Annis, G. Gutierrez, Edward Macaulay, R. C. Thomas, Paul Martini, J. De Vicente, Robert C. Nichol, Kaisey S. Mandel, Flavia Sobreira, Anais Möller, Alexei V. Filippenko, M. W. G. Johnson, Yen-Chen Pan, F. J. Castander, D. J. Brout, Enrique Gaztanaga, K. Honscheid, A. Carnero Rosell, T. M. C. Abbott, M. March, V. Scarpine, E. J. Sanchez, A. A. Plazas, P. Challis, Keith Bechtol, C. Lidman, B. E. Tucker, Eric Morganson, E. Swann, Jacobo Asorey, I. Sevilla-Noarbe, M. Soares-Santos, N. Kuropatkin, L. N. da Costa, Ricard Casas, Juan Estrada, Michael Schubnell, M. Childress, S. A. Uddin, J. Carretero, Tamara M. Davis, Rob Sharp, M. Sako, D. L. Hollowood, S. Serrano, Richard Kessler, Marcos Lima, Josh Frieman, P. Wiseman, D. L. Burke, Robert A. Gruendl, Arturo Avelino, E. Suchyta, A. G. Kim, David J. Brooks, Ben Hoyle, Steven M. Crawford, M. A. G. Maia, M. Smith, Daniel Gruen, D. W. Gerdes, Australian Astronomical Observatory, Comisión Nacional de Investigación Científica y Tecnológica (Chile), University of California, National Aeronautics and Space Administration (US), W. M. Keck Foundation, Smithsonian Institution, University of Arizona, South African Astronomical Observatory, European Commission, Google, University of Southampton, Department of Energy (US), National Science Foundation (US), National Energy Research Scientific Computing Center (US), Gordon and Betty Moore Foundation, Heising Simons Foundation, David and Lucile Packard Foundation, Agencia Nacional de Investigación y Desarrollo (Chile), Ministerio de Educación y Ciencia (España), Science and Technology Facilities Council (UK), Higher Education Funding Council for England, University of Illinois, University of Chicago, The Ohio State University, Texas A&M University, Financiadora de Estudos e Projetos (Brasil), Ministério da Ciência, Tecnologia e Inovação (Brasil), Deutsches Krebsforschungszentrum, University of Cambridge, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (España), University College London, University of Edinburgh, CSIC - Instituto de Ciencias del Espacio (ICE), Ministerio de Ciencia e Innovación (España), University of Pennsylvania, University of Portsmouth, Stanford University, University of Sussex, Institut de Physique des 2 Infinis de Lyon (IP2I Lyon), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), and DES
- Subjects
Observational cosmology ,010504 meteorology & atmospheric sciences ,Cosmological parameters ,Astrophysics ,Sky surveys ,01 natural sciences ,Cosmology ,0103 physical sciences ,Binary star ,010303 astronomy & astrophysics ,STFC ,0105 earth and related environmental sciences ,Physics ,Type Ia supernovae ,RCUK ,Astronomy and Astrophysics ,Redshift ,ESPECTROSCOPIA ,Stars ,Supernova ,Supernovae ,13. Climate action ,Space and Planetary Science ,Dark energy ,Variable star ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
We present details on the observing strategy, data-processing techniques, and spectroscopic targeting algorithms for the first three years of operation for the Dark Energy Survey Supernova Program (DES-SN). This five-year program using the Dark Energy Camera mounted on the 4 m Blanco telescope in Chile was designed to discover and follow supernovae (SNe) Ia over a wide redshift range (0.05 < z < 1.2) to measure the equation-of-state parameter of dark energy. We describe the SN program in full: Strategy, observations, data reduction, spectroscopic follow-up observations, and classification. From three seasons of data, we have discovered 12,015 likely SNe, 308 of which have been spectroscopically confirmed, including 251 SNe Ia over a redshift range of 0.017 < z < 0.85. We determine the effective spectroscopic selection function for our sample and use it to investigate the redshiftdependent bias on the distance moduli of SNe Ia we have classified. The data presented here are used for the first cosmology analysis by DES-SN ("DES-SN3YR"), the results of which are given in Dark Energy Survey Collaboration et al. The 489 spectra that are used to define the DES-SN3YR sample are publicly available at https://des.ncsa.illinois.edu/releases/sn., Based in part on data acquired through the Australian Astronomical Observatory under program ATAC A/2013B/12. We acknowledge the traditional owners of the land on which the AAT stands, the Gamilaraay people, and pay our respects to elders past and present. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil). Observations with Gemini were obtained under NOAO programs 2013A-0373 and 2015B0197, corresponding to GN-2013B-Q-55, GS-2013B-Q-45, GS-2015B-Q-7, GN-2015B-Q-10, as well as GS-2015B-Q-8 under a Chilean program. Based on observations made with the Gran Telescopio Canarias (GTC), installed at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, in the island of La Palma. Observations with GTC were made under programs GTC77-13B, GTC70-14B, and GTC101-15B. Some of the data presented herein were obtained at the W. M. Keck Observatory, which isoperated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration (NASA). The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Observations with Keck were made under programs U063-2013B, U021-2014B, U048-2015B, and U038-2016A. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Maunakea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. This paper includes data gathered with the 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile, partially through program CN2015B-89. Observations reported here were obtained at the MMT Observatory, a joint facility of the Smithsonian Institution and the University of Arizona, under programs 2014c-SAO-4, 2015a-SAO-12, 2015c-SAO-21. Some of the observations reported in this paper were obtained with the Southern African Large Telescope (SALT) under programs 2013-1-RSA_OTH-023, 2013-2-RSA_OTH-018, 2014-1-RSA_OTH016, 2014-2-SCI-070, 2015-1-SCI-063, and 2015-2-SCI-061. Based on observations collected at the European Southern Observatory under ESO programmes 093.A-0749(A), 094.A0310(B), 095.A-0316(A), 096.A-0536(A), 095.D-0797(A). Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, Inovações e Comunicações (MCTIC) do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU). SOAR observations obtained under program 2014B-0205. Research at Lick Observatory is partially supported by a generous gift from Google. The Southampton group acknowledges support from EUFP7/ERC grant [615929]. MS acknowledges funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement No. 759194—USNAC). The Penn group was supported by DOE grant DE-FOA-0001358 and NSF grant AST-1517742. This research used resources of the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. A.V.F.ʼs group at U.C. Berkeley is grateful for financial assistance from NSF grant AST-1211916, the Christopher R. Redlich Fund, Gary and Cynthia Bengier, the TABASGO Foundation, and the Miller Institute for Basic Research in Science. The UCSC team is supported in part by NASA grants 14-WPS14-0048, NNG16PJ34G, NNG17PX03C, NSF grants AST-1518052 and AST-1815935, the Gordon & Betty Moore Foundation, the Heising-Simons Foundation, and by fellowships from the Alfred P. Sloan Foundation and the David and Lucile Packard Foundation to R.J.F. SGG acknowledges support by FCT under Project CRISP PTDC/FIS-AST31546 and UIDB/00099/2020. L.G. was funded by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 839090. This work has been partially supported by the Spanish grant PGC2018-095317-B-C21 within the European Funds for Regional Development (FEDER). Support for AC was provided by ANID, through the Millennium Science Initiative grant ICN12_009 (MAS) and by grant Basal CATA PFB 06/09. Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciência, Tecnologia e Inovação, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenössische Technische Hochschule (ETH) Zürich, Fermi National Accelerator Laboratory, the University of Illinois at UrbanaChampaign, the Institut de Ciències de l’Espai (IEEC/CSIC), the Institut de Física d’Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universität München and the associated Excellence Cluster Universe, the University of Michigan, NFS’s NOIRLab, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M University, and the OzDES Membership Consortium. Based in part on observations at Cerro Tololo InterAmerican Observatory at NSF?s NOIRLab (NOIRLab Prop. ID 2012B-0001; PI: J. Frieman), which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The DES data management system is supported by the National Science Foundation under Grant Numbers AST1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MICINN under grants ESP2017-89838, PGC2018-094773, PGC2018-102021, SEV-2016-0588, SEV-2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/ 2007-2013) including ERC grant agreements 240672, 291329, and 306478. We acknowledge support from the Brazilian Instituto Nacional de Ciência e Tecnologia (INCT) e-Universe (CNPq grant 465376/2014-2).
- Published
- 2020
48. Chemical Analysis of the Ultrafaint Dwarf Galaxy Grus II. Signature of High-mass Stellar Nucleosynthesis
- Author
-
David J. Brooks, R. A. Bernstein, Jennifer L. Marshall, J. Gschwend, A. Carnero Rosell, N. Kuropatkin, V. Scarpine, E. Buckley-Geer, D. L. Hollowood, S. Serrano, K. D. Eckert, T. N. Varga, L. N. da Costa, M. Carrasco Kind, Peter Doel, H. T. Diehl, S. Everett, J. D. Simon, K. Honscheid, Daniela Carollo, Marla Geha, D. Q. Nagasawa, J. Carretero, Marcelle Soares-Santos, Shantanu Desai, E. Bertin, Kyler Kuehn, E. J. Sanchez, Joshua A. Frieman, E. Suchyta, Gregory Tarle, I. Ferrero, P. Ferguson, Terese T. Hansen, Tenglin Li, Santiago Avila, Enrique Gaztanaga, Andrew B. Pace, Tim Eifler, M. E. C. Swanson, A. A. Plazas, David J. James, M. Costanzi, D. L. Burke, Juan Garcia-Bellido, S. Allam, Robert A. Gruendl, R. D. Wilkinson, Antonella Palmese, Ramon Miquel, M. A. G. Maia, Michel Aguena, M. March, Basilio X. Santiago, A. R. Walker, J. De Vicente, Samuel Hinton, G. Gutierrez, M. Smith, Daniel Gruen, D. W. Gerdes, F. Paz-Chinchón, Hansen, T. T., Marshall, J. L., Simon, J. D., Li, T. S., Bernstein, R. A., Pace, A. B., Ferguson, P., Nagasawa, D. Q., Kuehn, K., Carollo, D., Geha, M., James, D., Walker, A., Diehl, H. T., Aguena, M., Allam, S., Avila, S., Bertin, E., Brooks, D., Buckley-Geer, E., Burke, D. L., Rosell, A. C., Kind, M. C., Carretero, J., Costanzi Alunno Cerbolini, M., Da Costa, L. N., Desai, S., Vicente, J. D., Doel, P., Eckert, K., Eifler, T. F., Everett, S., Ferrero, I., Frieman, J., Garcia-Bellido, J., Gaztanaga, E., Gerdes, D. W., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., Kuropatkin, N., Maia, M. A. G., March, M., Miquel, R., Palmese, A., Paz-Chinchon, F., Plazas, A. A., Sanchez, E., Santiago, B., Scarpine, V., Serrano, S., Smith, M., Soares-Santos, M., Suchyta, E., Swanson, M. E. C., Tarle, G., Varga, T. N., Wilkinson, R., National Science Foundation (US), National Aeronautics and Space Administration (US), Kavli Institute for Particle Astrophysics and Cosmology, Department of Energy (US), Higher Education Funding Council for England, Ministerio de Ciencia y Tecnología (España), University of Illinois, University of Chicago, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico (Brasil), German Research Foundation, Ministerio de Economía y Competitividad (España), European Commission, University of California, University of Cambridge, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (España), University of Edinburgh, University of Michigan, National Optical Astronomy Observatory (US), University of Nottingham, The Ohio State University, University of Pennsylvania, University of Sussex, and Texas A&M University
- Subjects
Initial mass function ,010504 meteorology & atmospheric sciences ,Milky Way ,Chemical abundances ,Dwarf galaxies ,Chemically peculiar stars ,Stellar abundances ,FOS: Physical sciences ,GALÁXIA (VIA LÁCTEA) ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,7. Clean energy ,01 natural sciences ,Stellar nucleosynthesis ,0103 physical sciences ,Binary star ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,Stellar evolution ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics ,0105 earth and related environmental sciences ,Dwarf galaxy ,Physics ,Chemically peculiar star ,Astronomy and Astrophysics ,Chemical abundance ,Astrophysics - Astrophysics of Galaxies ,Abundance of the chemical elements ,Galaxy ,Astrophysics - Solar and Stellar Astrophysics ,Dwarf galaxie ,13. Climate action ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Astrophysics::Earth and Planetary Astrophysics - Abstract
We present a detailed abundance analysis of the three brightest member stars at the top of the giant branch of the ultrafaint dwarf (UFD) galaxy Grus II. All stars exhibit a higher than expected [Mg/Ca] ratio compared to metal-poor stars in other UFD galaxies and in the Milky Way (MW) halo. Nucleosynthesis in high-mass (20 M o) core-collapse supernovae has been shown to create this signature. The abundances of this small sample (three) stars suggests the chemical enrichment of Grus II could have occurred through substantial high-mass stellar evolution, and is consistent with the framework of a top-heavy initial mass function. However, with only three stars it cannot be ruled out that the abundance pattern is the result of a stochastic chemical enrichment at early times in the galaxy. The most metal-rich of the three stars also possesses a small enhancement in rapid neutron-capture (r-process) elements. The abundance pattern of the r-process elements in this star matches the scaled r-process pattern of the solar system and r-process enhanced stars in other dwarf galaxies and in the MW halo, hinting at a common origin for these elements across a range of environments. All current proposed astrophysical sites of r-process element production are associated with high-mass stars, thus the possible top-heavy initial mass function of Grus II would increase the likelihood of any of these events occurring. The time delay between the and r-process element enrichment of the galaxy favors a neutron star merger as the origin of the r-process elements in Grus II., Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciência, Tecnologia e Inovação, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey. The collaborating institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenössische Technische Hochschule (ETH) Zürich, Fermi National Accelerator Laboratory, the University of Illinois at UrbanaChampaign, the Institut de Ciències de l’Espai (IEEC/CSIC), the Institut de Física d’Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universität München and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M University, and the OzDES Membership Consortium. Based in part on observations at Cerro Tololo InterAmerican Observatory, National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The DES data management system is supported by the National Science Foundation under grant Nos. AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2015-71825, ESP2015-66861, FPA2015-68048, SEV2016-0588, SEV-2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. I.F.A.E. is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007- 2013) including ERC grant agreements 240672, 291329, and 306478. We acknowledge support from the Brazilian Instituto Nacional de Ciência e Tecnologia (INCT) e-Universe (CNPq grant 465376/2014-2). T.T.H and J.D.S acknowledge support from NSF grant AST1714873. T.S.L. is supported by NASA through Hubble Fellowship grant HST-HF2-51439.001, awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS5-26555. This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
- Published
- 2020
49. STRIDES: Spectroscopic and photometric characterization of the environment and effects of mass along the line of sight to the gravitational lenses DES J0408-5354 and WGD 2038-4008
- Author
-
F. J. Castander, B. Flaugher, Peter Doel, H. T. Diehl, Josh Frieman, Samuel Hinton, E. J. Sanchez, G. Gutierrez, I. Sevilla-Noarbe, N. Kuropatkin, T. N. Varga, L. N. da Costa, Peter Melchior, Douglas L. Tucker, Kyler Kuehn, Sunayana Bhargava, Huan Lin, M. E. C. Swanson, K. Honscheid, J. Carretero, F. Paz-Chinchón, V. Scarpine, Jennifer L. Marshall, M. Costanzi, Tim Eifler, Santiago Avila, Michael Schubnell, Lise Christensen, Antonella Palmese, G. Tarle, E. Buckley-Geer, G. Meylan, M. Smith, David J. James, Daniel Gruen, M. A. G. Maia, Marcelle Soares-Santos, S. Desai, Cristian Rusu, Felipe Menanteau, E. Bertin, S. Serrano, David J. Brooks, Pablo Fosalba, Tommaso Treu, J. Poh, Anowar J. Shajib, Michel Aguena, J. Gschwend, A. Carnero Rosell, S. Allam, Robert A. Gruendl, A. A. Plazas, E. Suchyta, Simon Birrer, A. Agnello, S. Everett, Ramon Miquel, Thomas E. Collett, R. L. C. Ogando, Christopher D. Fassnacht, Juan Garcia-Bellido, Kenneth C. Wong, M. Carrasco Kind, Sampath Mukherjee, Enrique Gaztanaga, Timo Anguita, J. De Vicente, Buckley-Geer, E J, Lin, H, Rusu, C E, Poh, J, Palmese, A, Agnello, A, Christensen, L, Frieman, J, Shajib, A J, Treu, T, Collett, T, Birrer, S, Anguita, T, Fassnacht, C D, Meylan, G, Mukherjee, S, Wong, K C, Aguena, M, Allam, S, Avila, S, Bertin, E, Bhargava, S, Brooks, D, Carnero , Rosell, A, Carrasco , Kind, M, Carretero, J, Castander, F J, Costanzi, M, da , Costa, L N, De , Vicente, J, Desai, S, Diehl, H T, Doel, P, Eifler, T F, Everett, S, Flaugher, B, Fosalba, P, García-Bellido, J, Gaztanaga, E, Gruen, D, Gruendl, R A, Gschwend, J, Gutierrez, G, Hinton, S R, Honscheid, K, James, D J, Kuehn, K, Kuropatkin, N, Maia, M A G, Marshall, J L, Melchior, P, Menanteau, F, Miquel, R, Ogando, R L C, Paz-Chinchón, F, Plazas, A A, Sanchez, E, Scarpine, V, Schubnell, M, Serrano, S, Sevilla-Noarbe, I, Smith, M, Soares-Santos, M, Suchyta, E, Swanson, M E C, Tarle, G, Tucker, D L, Varga, T N, Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), DES, European Space Agency, National Aeronautics and Space Administration (US), European Research Council, European Commission, and Ministerio de Economía y Competitividad (España)
- Subjects
Software_OPERATINGSYSTEMS ,redshifts ,ANGULAR MASKS ,h-0 ,quasars: individual: des j0408-5354, wgd 2038-4008 ,Astrophysics ,I ,7. Clean energy ,01 natural sciences ,Spectral line ,Gravitation ,individual: DES J0408-5354, WGD 2038-4008 [quasars] ,galaxies: groups: general ,clusters ,010303 astronomy & astrophysics ,Physics ,galaxy-group identification ,Line-of-sight ,individual: DES J0408-5354 [quasars] ,gravitational lensing: strong ,Velocity dispersion ,ComputerSystemsOrganization_PROCESSORARCHITECTURES ,i ,WGD 2038–4008 ,STELLAR POPULATION SYNTHESIS ,strong [gravitational lensing] ,quasars: individual: DES J0408–5354 ,stellar population synthesis ,quasars: individual: DES J0408-5354 ,WGD 2038-4008 ,Astrophysics - Astrophysics of Galaxies ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,QUASARES ,ComputingMethodologies_SIMULATIONANDMODELING ,FOS: Physical sciences ,Probability density function ,Data_CODINGANDINFORMATIONTHEORY ,Astrophysics::Cosmology and Extragalactic Astrophysics ,REDSHIFTS ,Astrophysics - Astrophysics of Galaxie ,evolution ,0103 physical sciences ,Hardware_INTEGRATEDCIRCUITS ,GALAXY-GROUP IDENTIFICATION ,STFC ,Astrophysics::Galaxy Astrophysics ,010308 nuclear & particles physics ,groups: general [galaxies] ,H-0 ,RCUK ,resolution ,Astronomy and Astrophysics ,Quasar ,angular masks ,Redshift ,Galaxy ,EVOLUTION ,RESOLUTION ,13. Climate action ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,CLUSTERS - Abstract
The DES Collaboration: et al., In time-delay cosmography, three of the key ingredients are (1) determining the velocity dispersion of the lensing galaxy, (2) identifying galaxies and groups along the line of sight with sufficient proximity and mass to be included in the mass model, and (3) estimating the external convergence κext from less massive structures that are not included in the mass model. We present results on all three of these ingredients for two time-delay lensed quad quasar systems, DES J0408–5354 and WGD 2038–4008 . We use the Gemini, Magellan, and VLT telescopes to obtain spectra to both measure the stellar velocity dispersions of the main lensing galaxies and to identify the line-of-sight galaxies in these systems. Next, we identify 10 groups in DES J0408–5354 and two groups in WGD 2038–4008 using a group-finding algorithm. We then identify the most significant galaxy and galaxy-group perturbers using the ‘flexion shift’ criterion. We determine the probability distribution function of the external convergence κext for both of these systems based on our spectroscopy and on the DES-only multiband wide-field observations. Using weighted galaxy counts, calibrated based on the Millennium Simulation, we find that DES J0408–5354 is located in a significantly underdense environment, leading to a tight (width ∼3 per cent), negative-value κext distribution. On the other hand, WGD 2038–4008 is located in an environment of close to unit density, and its low source redshift results in a much tighter κext of ∼1 per cent, as long as no external shear constraints are imposed., JP would like to thank Gourav Khullar for his help and insightful discussions that helped improve the analysis in this paper. This work made use of computing resources and support provided by the Research Computing Center at the University of Chicago. JP is supported in part by the Kavli Institute for Cosmological Physics at the University of Chicago through grant NSF PHY-1125897 and an endowment from the Kavli Foundation and its founder Fred Kavli. AJS was supported by the National Aeronautics and Space Administration (NASA) through the Space Telescope Science Institute (STScI) grant HST-GO-15320. AJS was also supported by the Dissertation Year Fellowship from the University of California, Los Angeles (UCLA) graduate division. TA acknowledges support from Proyecto FONDECYT N: 1190335. This work was supported by World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan. CDF acknowledges support for this work from the National Science Foundation under Grant No. AST-1715611. SM acknowledges the funding from the European Research Council (ERC) under the EUs Horizon 2020 research and innovation program (COSMICLENS; grant agreement No. 787886). Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciência, Tecnologia e Inovação, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenössische Technische Hochschule (ETH) Zürich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciències de l’Espai (IEEC/CSIC), the Institut de Física d’Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universität München and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M University, and the OzDES Membership Consortium. Based in part on observations at Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The DES data management system is supported by the National Science Foundation under Grant Numbers AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2015-71825, ESP2015-88861, FPA2015-68048, SEV-2012-0234, SEV-2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478. We acknowledge support from the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO), through project number CE110001020. This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.
- Published
- 2020
- Full Text
- View/download PDF
50. Quasar Accretion Disk Sizes from Continuum Reverberation Mapping in the DES Standard-star Fields
- Author
-
Edward Macaulay, Ben Hoyle, D. Gruen, R. C. Smith, Devon L. Hollowood, M. Banerji, William Wester, David James, Kyler Kuehn, M. Carrasco Kind, J. De Vicente, Anais Möller, E. Suchyta, A. Carnero Rosell, G. Tarle, Geraint F. Lewis, Jacobo Asorey, M. S. Schubnell, K. Honscheid, Peter Doel, Marcelle Soares-Santos, Tim Eifler, Alex G. Kim, Samuel Hinton, J. K. Hoormann, Elisabeth Krause, Santiago Serrano, Flavia Sobreira, Enrique Gaztanaga, B. Flaugher, A. K. Romer, V. Vikram, L. N. da Costa, Paul Martini, Daniela Carollo, C. Lidman, J. L. Marshall, H. T. Diehl, William G. Hartley, M. Smith, Ramon Miquel, J. Carretero, Tamara M. Davis, Douglas L. Tucker, Joshua A. Frieman, Sahar S. Allam, Zhefu Yu, B. E. Tucker, E. Swann, E. Buckley-Geer, Marco A. P. Lima, A. A. Plazas, Bradley M. Peterson, David Brooks, M. E. C. Swanson, J. Gschwend, Santiago Avila, J. Calcino, N. P. Kuropatkin, James Annis, Christopher S. Kochanek, Pablo Fosalba, D. Mudd, Karl Glazebrook, E. J. Sanchez, G. Gutierrez, Felipe Menanteau, C. B. D'Andrea, Robert A. Gruendl, V. Scarpine, M. A. G. Maia, Sachin N. Desai, Carlos Cunha, Juan Garcia-Bellido, E. Bertin, National Science Foundation (US), Australian Government, Department of Energy (US), Ministerio de Ciencia, Innovación y Universidades (España), Science and Technology Facilities Council (UK), Higher Education Funding Council for England, University of Illinois, Kavli Institute for Particle Astrophysics and Cosmology, The Ohio State University, Texas A&M University, Financiadora de Estudos e Projetos (Brasil), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico (Brasil), German Research Foundation, Argonne National Laboratory (US), University of California, University of Cambridge, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (España), European Commission, Generalitat de Catalunya, and Australian Research Council
- Subjects
Accretion ,Active galactic nucleus ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Large Synoptic Survey Telescope ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,7. Clean energy ,Reverberation mapping ,0103 physical sciences ,Supermassive black holes ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,Quasars ,Astrophysics::Galaxy Astrophysics ,Physics ,Supermassive black hole ,Active galactic nuclei ,010308 nuclear & particles physics ,Astronomy and Astrophysics ,Quasar ,Light curve ,Astrophysics - Astrophysics of Galaxies ,Accretion (astrophysics) ,Supernova ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Astrophysics::Earth and Planetary Astrophysics - Abstract
Full author list: Zhefu Yu, Paul Martini, T. M. Davis, R. A. Gruendl, J. K. Hoormann, C. S. Kochanek, C. Lidman, D. Mudd, B. M. Peterson, W. Wester, S. Allam, J. Annis, J. Asorey, S. Avila, M. Banerji, E. Bertin, D. Brooks, E. Buckley-Geer, J. Calcino, A. Carnero Rosell, D. Carollo, M. Carrasco Kind, J. Carretero, C. E. Cunha, C. B. D'Andrea, L. N. da Costa, J. De Vicente, S. Desai, H. T. Diehl, P. Doel, T. F. Eifler, B. Flaugher, P. Fosalba, J. Frieman, J. García-Bellido, E. Gaztanaga, K. Glazebrook, D. Gruen, J. Gschwend, G. Gutierrez, W. G. Hartley, S. R. Hinton, D. L. Hollowood, K. Honscheid, B. Hoyle, D. J. James, A. G. Kim, E. Krause, K. Kuehn, N. Kuropatkin, G. F. Lewis, M. Lima, E. Macaulay, M. A. G. Maia, J. L. Marshall, F. Menanteau, R. Miquel, A. Möller, A. A. Plazas, A. K. Romer, E. Sanchez, V. Scarpine, M. Schubnell, S. Serrano, M. Smith, R. C. Smith, M. Soares-Santos, F. Sobreira, E. Suchyta, E. Swann, M. E. C. Swanson, G. Tarle, B. E. Tucker, D. L. Tucker, and V. Vikram, Measurements of the physical properties of accretion disks in active galactic nuclei are important for better understanding the growth and evolution of supermassive black holes. We present the accretion disk sizes of 22 quasars from continuum reverberation mapping with data from the Dark Energy Survey (DES) standard-star fields and the supernova C fields. We construct continuum light curves with the griz photometry that span five seasons of DES observations. These data sample the time variability of the quasars with a cadence as short as 1 day, which corresponds to a rest-frame cadence that is a factor of a few higher than most previous work. We derive time lags between bands with both JAVELIN and the interpolated cross-correlation function method and fit for accretion disk sizes using the JAVELIN thin-disk model. These new measurements include disks around black holes with masses as small as ∼10 M , which have equivalent sizes at 2500 Å as small as ∼0.1 lt-day in the rest frame. We find that most objects have accretion disk sizes consistent with the prediction of the standard thin-disk model when we take disk variability into account. We have also simulated the expected yield of accretion disk measurements under various observational scenarios for the Large Synoptic Survey Telescope Deep Drilling Fields. We find that the number of disk measurements would increase significantly if the default cadence is changed from 3 days to 2 days or 1 day., This material is based on work supported by the National Science Foundation under grant No. 1615553. This research was funded partially by the Australian Government through the Australian Research Council through project DP160100930. Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at The Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciência, Tecnologia e Inovação, the Deutsche Forschungsgemeinschaft, and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenössische Technische Hochschule (ETH) Zürich, Fermi National Accelerator Laboratory, the University of Illinois at UrbanaChampaign, the Institut de Ciències de l’Espai (IEEC/CSIC), the Institut de Física d’Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universität München and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M University, and the OzDES Membership Consortium. Based in part on observations at Cerro Tololo InterAmerican Observatory, National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The DES data management system is supported by the National Science Foundation under grant Nos. AST-1138766 and AST1536171. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2015-71825, ESP2015-66861, FPA2015-68048, SEV-2016-0588, SEV-2016- 0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013), including ERC grant agreements 240672, 291329, and 306478. We acknowledge support from the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO), through project No. CE110001020, and the Brazilian Instituto Nacional de Ciência e Tecnologia (INCT) e-Universe (CNPq grant 465376/2014-2). This manuscript has been authored by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.
- Published
- 2020
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.