1. Explainable Artificial Intelligence (XAI) 2.0: A manifesto of open challenges and interdisciplinary research directions
- Author
-
Longo, L, Brcic, M, Cabitza, F, Choi, J, Confalonieri, R, Ser, J, Guidotti, R, Hayashi, Y, Herrera, F, Holzinger, A, Jiang, R, Khosravi, H, Lecue, F, Malgieri, G, Páez, A, Samek, W, Schneider, J, Speith, T, Stumpf, S, Longo, Luca, Brcic, Mario, Cabitza, Federico, Choi, Jaesik, Confalonieri, Roberto, Ser, Javier Del, Guidotti, Riccardo, Hayashi, Yoichi, Herrera, Francisco, Holzinger, Andreas, Jiang, Richard, Khosravi, Hassan, Lecue, Freddy, Malgieri, Gianclaudio, Páez, Andrés, Samek, Wojciech, Schneider, Johannes, Speith, Timo, Stumpf, Simone, Longo, L, Brcic, M, Cabitza, F, Choi, J, Confalonieri, R, Ser, J, Guidotti, R, Hayashi, Y, Herrera, F, Holzinger, A, Jiang, R, Khosravi, H, Lecue, F, Malgieri, G, Páez, A, Samek, W, Schneider, J, Speith, T, Stumpf, S, Longo, Luca, Brcic, Mario, Cabitza, Federico, Choi, Jaesik, Confalonieri, Roberto, Ser, Javier Del, Guidotti, Riccardo, Hayashi, Yoichi, Herrera, Francisco, Holzinger, Andreas, Jiang, Richard, Khosravi, Hassan, Lecue, Freddy, Malgieri, Gianclaudio, Páez, Andrés, Samek, Wojciech, Schneider, Johannes, Speith, Timo, and Stumpf, Simone
- Abstract
Understanding black box models has become paramount as systems based on opaque Artificial Intelligence (AI) continue to flourish in diverse real-world applications. In response, Explainable AI (XAI) has emerged as a field of research with practical and ethical benefits across various domains. This paper highlights the advancements in XAI and its application in real-world scenarios and addresses the ongoing challenges within XAI, emphasizing the need for broader perspectives and collaborative efforts. We bring together experts from diverse fields to identify open problems, striving to synchronize research agendas and accelerate XAI in practical applications. By fostering collaborative discussion and interdisciplinary cooperation, we aim to propel XAI forward, contributing to its continued success. We aim to develop a comprehensive proposal for advancing XAI. To achieve this goal, we present a manifesto of 28 open problems categorized into nine categories. These challenges encapsulate the complexities and nuances of XAI and offer a road map for future research. For each problem, we provide promising research directions in the hope of harnessing the collective intelligence of interested stakeholders.
- Published
- 2024