1. Global-in-time energy stability analysis for the exponential time differencing Runge-Kutta scheme for the phase field crystal equation
- Author
-
Li, Xiao, Qiao, Zhonghua, Wang, Cheng, and Zheng, Nan
- Subjects
Mathematics - Numerical Analysis - Abstract
The global-in-time energy estimate is derived for the second-order accurate exponential time differencing Runge-Kutta (ETDRK2) numerical scheme to the phase field crystal (PFC) equation, a sixth-order parabolic equation modeling crystal evolution. To recover the value of stabilization constant, some local-in-time convergence analysis has been reported, and the energy stability becomes available over a fixed final time. In this work, we develop a global-in-time energy estimate for the ETDRK2 numerical scheme to the PFC equation by showing the energy dissipation property for any final time. An a priori assumption at the previous time step, combined with a single-step $H^2$ estimate of the numerical solution, is the key point in the analysis. Such an $H^2$ estimate recovers the maximum norm bound of the numerical solution at the next time step, and then the value of the stabilization parameter can be theoretically justified. This justification ensures the energy dissipation at the next time step, so that the mathematical induction can be effectively applied, by then the global-in-time energy estimate is accomplished. This paper represents the first effort to theoretically establish a global-in-time energy stability analysis for a second-order stabilized numerical scheme in terms of the original free energy functional. The presented methodology is expected to be available for many other Runge-Kutta numerical schemes to the gradient flow equations.
- Published
- 2024