1. OpenDosimeter: Open Hardware Personal X-ray Dosimeter
- Author
-
Ger, Norah, Ku, Alice, Lopez, Jasmyn, Bennett, N. Robert, Wang, Jia, Ateka, Grace, Anyenda, Enoch, Rosezky, Matthias, Wang, Adam S., and Shaker, Kian
- Subjects
Physics - Instrumentation and Detectors ,Physics - Medical Physics - Abstract
We present OpenDosimeter (https://opendosimeter.org/), an open hardware solution for real-time personal X-ray dose monitoring based on a scintillation counter. Using an X-ray sensor assembly (LYSO + SiPM) on a custom board powered by a Raspberry Pi Pico, OpenDosimeter provides real-time feedback (1 Hz), data logging (10 hours), and battery-powered operation. One of the core innovations is that we calibrate the device using $^{241}$Am found in ionization smoke detectors. Specifically, we use the $\gamma$-emissions to spectrally calibrate the dosimeter, then calculate the effective dose from X-ray exposure by compensating for the scintillator absorption efficiency and applying energy-to-dose coefficients derived from tabulated data in the ICRP 116 publication. We demonstrate that this transparent approach enables real-time dose rate readings with a linear response between 0.1-1000 $\mu$Sv/h at $\pm$25% accuracy, tested for energies up to 120 keV. The maximum dose rate readings are limited by pile-up effects when approaching count rate saturation ($\sim$77 kcps at $\sim$13 $\mu$s average pulse processing time). The total component cost for making an OpenDosimeter is <\$100, which, combined with its open design (both hardware and software), enables cost-effective local reproducibility on a global scale. This paper complements the open-source documentation by explaining the underlying technology, the algorithm for dose calculation, and areas for future improvement., Comment: 7 pages, 3 figures
- Published
- 2024